pySecDec Documentation
Release 1.5.2

Sophia Borowka Gudrun Heinrich Stephan Jahn
Stephen Jones Matthias Kerner Florian Langer
Vitaly Magerya Andres Poldaru Johannes Schlenk
Emilio Villa Tom Zirke

Aug 24, 2021

CONTENTS

Installation 3
1.1 Download the Programand Install 3
1.2 The Geomethod and Normaliz i e 3
1.3 Drawing Feynman Diagrams withneato 3
1.4 Additional Dependencies for Generated c++ Packages 4
Getting Started 5
2.1 ASimple Exampleo e 5
2.2 EvaluatingaLoopIntegral e e e e e e 6
2.3 Evaluating a Weighted Sum of Integrals e 13
2.4 Using Expansion By Regions (Generic Integral) 14
2.5 Using Expansion By Regions (Loop Integral) 15
2.6 Listof Examples e e e 16
Overview 19
3.1 TheAlgebraModule e 19
3.2 Feynman Parametrization of Loop Integrals 22
3.3 Sector DecOmMpOSItION v v vt e 24
34 Subtraction e e e e e e e 27
3.5 EXpansion .. .o .o e e e e e e e e e e e e e e e e 28
SecDecUtil 31
4.1 Amplitudeo e e e e e e 31
42 SErieS . . v v o e e e e e e e e 33
43 Deep Apply oo e e e e 34
4.4 Uncertainties i e e e e e e e e e e e e e 35
4.5 Integrand CONtAINET v v i vt i e 37
4.6 INtegrator e e e e e e e e e e e e e e e 38
Reference Guide 47
5.1 Algebra e e e e e e e e e e 47
5.2 Looplntegral e e e e e e 55
5.3 Polytope e e e e e e 64
54 DecompoSition e e e e 66
5.5 Matrix SOIt oL e e e e 72
5.6 Subtraction L. e e e e 73
5.7 EXpansion . . oL .o e e e e e e e e e e e e e e e e e e 75
5.8 Code WIIter i i e e e e e 76
5.9 Generated C++ Libraries oL e e e e e 83
5.10 Integral Interface L e 88

501 Miscellaneous L e e 95

5.12 Expansion by Regions e e e e 102

6 Frequently Asked Questions 105

6.1 How can I adjust the integrator parameters? ot e e 105

6.2 How can I request a higher numerical accuracy? 106

6.3 What can [do if the integration takes very long? 106

6.4 How can I tune the contour deformation parameters? 106

6.5 What can I do if the program stops with an error message containing sign_check_error? 106

6.6 What does additional_prefactor mean exactly? Lo e 107

6.7 WhatcanIdoiflgetnan? e e e e e 107

6.8 What can [use as numerator of aloop integral? 108

6.9 How can I integrate just one coefficient of a particular order in the regulator? 108

6.10 How canIuse complex masses? e 109

6.11 When should I use the “split” option? 109
6.12 How can I obtain results from pySecDec in a format convenient for GiNaC/ Sympy/ Mathematica/

Maple? . . . e e e e e 109

6.13 Expansion by regions: what does the parameter z mean? 110

6.14 Expansion by regions: why does the t-method not converge? 110

7 References 111

8 Indices and tables 113

Bibliography 115

Python Module Index 119

Index 121

pySecDec Documentation, Release 1.5.2

pySecDec [PSD17], [PSD18], [PSD21] is a toolbox for the calculation of dimensionally regulated parameter integrals
using the sector decomposition approach [BHOO0]; see also [HeiO8], [BHJ+15].

Please cite the following references if you use pySecDec for a scientific publication:
* pySecDec [PSD17], [PSD18], [PSD21]
* CUBA [Hah05], [Hah16]
e FORM [Ver00], [KUV13], [RUV17]

GSL [GSL]

* nauty [MP+14] (if you use dreadnaut)

e normaliz [BIR], [BIS16] (if you use a geometric decomposition strategy)

QMC [LWY+15] (if you use the quasi-monte carlo integrator)

CONTENTS 1

pySecDec Documentation, Release 1.5.2

2 CONTENTS

CHAPTER
ONE

INSTALLATION

1.1 Download the Program and Install

pySecDec works under Python version 3.6 or newer on unix-like systems. The latest release can be installed from PyPI
by first (optionally) upgrading pip:

’$ python3 -m pip install --user 'pip>=20.1"'

and then running:

’$ python3 -m pip install --user —--upgrade pySecDec

1.2 The Geomethod and Normaliz

Note: If you are not urgently interested in using the geometric decomposition, you can ignore this section
for the beginning. The instructions below are not essential for a pySecDec installation. You can still install normaliz
after installing pySecDec. All but the geometric decomposition routines work without normaliz.

If you want to use the geometric decomposition module, you need the normaliz [BIR] command line exe-
cutable. The geometric decomposition moduleis designed for normaliz version 3 - currently versions 3. 3.
0,3.4.0,3.5.4,3.6.0,3.6.2,3.7.3,3.7.4,and 3.8.1 are known to work. We recommend to set your
SPATH such that the normaliz executable is found. Alternatively, you can pass the path to the normaliz executable
directly to the functions that need it.

1.3 Drawing Feynman Diagrams with neato

In order to use plot_diagram(), the command line tool neato must be available. The function
loop_package () triestocall plot_diagram() if givena LoopIntegral FromGraph and issues a warning
on failure. That warning can be safely ignored if you are not interested in the drawing.

neato is part of the graphviz package. It is available in many package repositories and at http://www.graphviz.org.

https://pypi.org/project/pySecDec/
https://pypi.org/project/pip/
http://www.graphviz.org

pySecDec Documentation, Release 1.5.2

1.4 Additional Dependencies for Generated c++ Packages

Note: The following packages are redistributed with the pySecDec tarball; i.e. you don’t have to install any of them
yourself.

The intended main usage of pySecDec is to make it write c++ packages using the functions pySecDec.
code_writer.make package () and pySecDec.loop integral.loop package (). In order to build
these c++ packages, the following additional non-python-based libraries and programs are used:

CUBA (http://www.feynarts.de/cuba/)

QMC (https://github.com/mppmu/qmc)
FORM (http://www.nikhef.nl/~form/)

SecDecUTtil (part of pySecDec, see SedDecUtil), depends on:
— catch (https://github.com/philsquared/Catch)
— gsl (http://www.gnu.org/software/gsl/)

The functions pySecDec.code writer.make package () and pySecDec.loop_integral.
loop_package () can use the external program nauty [MP+14] to find all sector symmetries and therefore
reduce the number of sectors:

e NAUTY (http://pallini.di.uniromal..it/)

These packages are redistributed along with pySecDec itself, and will be built automatically during pySecDec instal-
lation.

4 Chapter 1. Installation

http://www.feynarts.de/cuba/
https://github.com/mppmu/qmc
http://www.nikhef.nl/~form/
https://github.com/philsquared/Catch
http://www.gnu.org/software/gsl/
http://pallini.di.uniroma1.it/

CHAPTER
TWO

GETTING STARTED

After installation, you should have a folder examples in your main pySecDec directory. Here we describe a few of the
examples available in the examples directory. A full list of examples is given in List of Examples.

2.1 A Simple Example

We first show how to compute a simple dimensionally regulated integral:

1 1
/ dac/ dy (z +y)~2T.
0 0

To run the example change to the easy directory and run the commands:

$ python3 generate_easy.py
$ make -C easy
$ python3 integrate_easy.py

Additional build options are discussed in the next section. This will evaluate and print the result of the integral:

Numerical Result: + ((1.00000000000000022e+00,0.00000000000000000e+00) +/- (5.
—65352153979095401e-17,0.00000000000000000e+00)) xeps”™-1 + ((3.06852819440053548e-01,
—0.00000000000000000e+00) +/- (1.18502493127591741e-15,0.00000000000000000e+00)) +_,
—0 (eps)

Analytic Result: + (1.000000)xeps”-1 + (0.306853) + O(eps)

The file generate_easy.py defines the integral and calls pySecDec to perform the sector decomposition. When
run it produces the directory easy which contains the code required to numerically evaluate the integral. The make
command builds this code and produces a library. The file integrate_easy.py loads the integral library and
evaluates the integral. The user is encouraged to copy and adapt these files to evaluate their own integrals.

Note: If the user is interested in evaluating a loop integral there are many convenience functions that make this much
easier. Please see Evaluating a Loop Integral for more details.

In generate_easy.py we first import make_package, a function which can decompose, subtract and expand
regulated integrals and write a C++ package to evaluate them. To define our integral we give it a name which will be
used as the name of the output directory and C++ namespace. The integration_variables are declared along with a
list of the name of the regulators. We must specify a list of the requested_orders to which pySecDec should expand
our integral in each regulator. Here we specify requested_orders = [0] which instructs make package to
expand the integral up to and including O(e). Next, we declare the polynomials_to_decompose, here sympy syntax
should be used.

pySecDec Documentation, Release 1.5.2

#!/usr/bin/env python3
from pySecDec import make_package

if name == main__ ":

make_package (

name = 'easy',

integration_variables = ['x','yv'],

regulators = ['eps'],

requested_orders = [0],
polynomials_to_decompose = [' (x+ty)”" (-2+eps) '],

)

Once the C++ library has been written and built we run integrate_easy.py. Here the library is loaded us-
ing TntegrallLibrary. Calling the instance of TntegrallLibrary with easy_integral () numerically
evaluates the integral and returns the result.

#!/usr/bin/env python3

from pySecDec.integral_interface import Integrallibrary
from math import log
if _ name_ == "_ main_ ":

load c++ library
easy = Integrallibrary('easy/easy_pylink.so")

integrate
_, _, result = easy()

print result
print ('Numerical Result:' + result)
print ('Analytic Result:' + ' + (2f)*xeps”-1 + (%f) + Of(eps)' % (1.0,1.0-1og(2.0)))

2.2 Evaluating a Loop Integral

A simple example of the evaluation of a loop integral with pySecDec is boxIL. This example computes a one-loop box
with one off-shell leg (with off-shellness s1) and one internal massive line (with mass squared msq), it is shown in
Fig. 2.1.

To run the example change to the boxIL directory and run the commands:

$ python3 generate_boxlL.py
$ make -C boxlL
$ python3 integrate_boxlL.py

This will print the result of the integral evaluated with Mandelstam invariants s=4.0, t=-0.75 and s1=1.25,
msg=1.0:

eps”-2: -0.142868356275422825 — 1.63596224151119965e-6xI +/— (0.00118022544307414272_,
—+ 0.000210769456586696187*I)

eps”-1: 0.639405625715768089 + 1.34277036689902802e-6+I +/- (0.00650722394065588166_,
—+ 0.0009714966271I5370589T+T) (continues on next page)

6 Chapter 2. Getting Started

pySecDec Documentation, Release 1.5.2

Fig. 2.1: Diagrammatic representation of boxIL

2.2,

Evaluating a Loop Integral 7

pySecDec Documentation, Release 1.5.2

(continued from previous page)

eps”0 : -0.425514350373418893 + 1.86892487760861536+I +/- (0.00706834403694714484 +_,
—0.0186497890361357298*I)

The file generate_box1L.py defines the loop integral and calls pySecDec to perform the sector decomposition.
When run it produces the directory boxIL which contains the code required to numerically evaluate the integral. The
make command builds this code and produces a library. The file integrate_box1L.py loads the integral library
and evaluates the integral for a specified numerical point.

The content of the python files is described in detail in the following sections. The user is encouraged to copy and
adapt these files to evaluate their own loop integrals.

2.2.1 Defining a Loop Integral

To explain the input format, let us look at generate_box1L.py from the one-loop box example. The first two
lines read

from pySecDec.loop_integral import loop_package
import pySecDec as psd

They say that the module pySecDec should be imported with the alias psd, and that the function Ioop_package
from the module I oop integral is needed.

The following part contains the definition of the loop integral 11:

1i = psd.loop_integral.LoopIntegralFromGraph (

give adjacency list and indicate whether the propagator connecting the numbered_,
—vertices 1s massive or massless in the first entry of each list item.
internal_lines = [['m',[1,2]]1,10,[2,311,10,1[3,411,10,1[4,1111,

contains the names of the external momenta and the label of the vertex they are,
—attached to

external_lines = [['pl',1],['p2',2]1,['p3',31,['p4",4]11,

define the kinematics and the names for the kinematic invariants
replacement_rules = [

'plxpl', 'sl'),

'pzxp2', 0),

'p3*xp3', 0),

"pdxpd’, 0),

"p3xp2', 't/2"),

'plxp2', 's/2-sl/2'"),
"plxp4d', 't/2-sl/2'"),
'p2xpd', 'sl/2-t/2-s/2'),
'p3xp4', 's/2'),

'mx%x2', 'msq')

(
(
(
(
(
(
(
(
(
(

Here the class LoopIntegralFromGraph is used to Feynman parametrize the loop integral given the adjacency
list. Alternatively, the class LoopIntegralFromPropagators can be used to construct the Feynman integral
given the momentum representation.

The symbols for the kinematic invariants and the masses also need to be given as an ordered list. The ordering is
important as the numerical values assigned to these list elements at the numerical evaluation stage should have the
same order.

8 Chapter 2. Getting Started

pySecDec Documentation, Release 1.5.2

Mandelstam_symbols = ['s','t', 's1"]
mass_symbols = ['msqg']

Next, the function 1oop_package is called. It will create a folder called boxIL. It performs the algebraic sector
decomposition steps and writes a package containing the C++ code for the numerical evaluation. The argument
requested_orders specifies the order in the regulator to which the integral should be expanded. For a complete list of
possible options see 1oop_package.

loop_package (

name = 'boxlL',

loop_integral = 1i,

real_parameters = Mandelstam_symbols + mass_symbols,

the highest order of the final epsilon expansion —-> change this value to whatever,_
—you think is appropriate

requested_orders = [0],

the optimization level to use in FORM (can be 0, 1, 2, 3, 4)
form_optimization_level = 2,

the WorkSpace parameter for FORM
form_work_space = '100M",

the method to be used for the sector decomposition

valid values are " “iterative' or "~ ‘geometric’ ' or ' ‘geometric_ku
decomposition_method = 'iterative',
1f you choose "~ ‘geometric[_ku] ' and 'normaliz' is not in your

SPATH, you can set the path to the 'normaliz' command-line
executable here
#normaliz_executable='/path/to/normaliz’,

2.2.2 Building the C++ Library

After running the python script generate_boxIL.py the folder boxIL is created and should contain the following files
and subdirectories

Makefile README box1L.pdf box1lL_integral integral_names.txt pylink
Makefile.conf box1L.hpp box1L_coefficients integrate_box1L.cpp src

in the folder boxIL, typing

$ make

will create the static library box1L_integral/libbox1L_integral.a and box1l_pylink.so which can
be linked to external programs. The make command can also be run in parallel by using the —3j option. The number
of threads each instance of t form uses can be set via the environment variable FORMTHREADS.

New in version 1.4: The environment variable FORMOPT sets FORM’s code optimization level. If not set, the value
that was passed to make_package or 1oop_package is used.

To build the dynamic library 1ibbox1L. so set dynamic as build target:

2.2. Evaluating a Loop Integral 9

pySecDec Documentation, Release 1.5.2

’$ make dynamic

To build the library with nvce for GPU support, type

’$ CXX=nvcc SECDEC_WITH_CUDA_FLAGS="-arch=sm_ XX" make

where sm_XX must be replaced by the target GPU architechtures, see the arch option of NVCC. The
SECDEC_WITH_CUDA_FLAGS environment variable, which enables GPU code compilation, contains flags which
are passed to NVCC during code compilation and linking. Multiple GPU architectures may be specified as de-
scribed in the NVCC manual, for example SECDEC_WITH_CUDA_FLAGS="-gencode arch=compute_XX,
code=sm_XX —gencode arch=compute_YY, code=sm_YY" where XX and YY are the target GPU architec-
tures. The script examples/easy/print—-cuda—arch.sh can be used to obtain the compute architecture of
your current machine.

To evaluate the integral numerically a program can call one of these libraries. How to do this interactively or via a
python script is explained in the section Python Interface. Alternatively, a C++ program can be produced as explained
in the section C++ Interface.

2.2.3 Python Interface (basic)

To evaluate the integral for a given numerical point we can use integrate_box1L.py. First it imports the neces-
sary python packages and loads the C++ library.

from _ future import print_function
from pySecDec.integral_interface import Integrallibrary
import sympy as sp

load c++ library
boxlL = Integrallibrary('boxlL/boxll_pylink.so")

Next, an integrator is configured for the numerical integration. The full list of available integrators and their options is
givenin integral interface.

choose integrator
box.use_Vegas (flags=2) # ' flags=2"": verbose ——> see Cuba manual

If you want to use GPUs, change to the CudaOmc integrator. For example, to run on all available GPUs and CPU
cores using the Korobov transform with weight 3, change the above lines to

choose integrator
box.use_QOmc (transform="'Korobov3")

Calling the box library numerically evaluates the integral. Note that the order of the real parameters must match that
specified in generate_box1L.py. A list of possible settings for the library, in particular details of how to set the
contour deformation parameters, is given in TntegralLibrary. To change the accuracy settings of the integration,
the most important parameters are epsrel, epsabs and maxeval, which can be added to the integrator argument
list:

choose integrator
box.use_Vegas (flags=2,epsrel=0.01, epsabs=1le-07, maxeval=1000000)

integrate
str_integral_without_prefactor, str_prefactor, str_integral with_prefactor =
—box1lL (real_parameters=[4.0, -0.75, 1.25, 1.0])

10 Chapter 2. Getting Started

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-gpu-code-generation
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-gpu-code-generation

pySecDec Documentation, Release 1.5.2

In case of a sign check error (sign_check_error), the arguments number_of_presamples,
deformation_parameters_maximum, and deformation_parameters_minimum as de-
scribed in IntegrallLibrary can be used to modify the contour. At this point the string
str_integral_with_prefactor contains the full result of the integral and can be manipulated as re-
quired. In the integrate_box1L.py an example is shown how to parse the expression with sympy and access
individual orders of the regulator.

Note: Instead of parsing the result, it can simply be printed with the line
print (str_integral_with_prefactor).

convert complex numbers from c++ to sympy notation

str_integral_with_prefactor = str_integral with_prefactor.replace(', ', "+Ix")
str_prefactor = str_prefactor.replace(',', '+Ix")
str_integral_without_prefactor = str_integral_ without_prefactor.replace(', ', '+Ix")

convert result to sympy expressions

integral_with_prefactor = sp.sympify(str_integral_with_prefactor.replace('+/-"',
—'"'xvalueterrorx"))
integral_with_prefactor_err = sp.sympify(str_integral_with_prefactor.replace('+/-",

—'«valueterrorx'))

prefactor = sp.sympify(str_prefactor)

integral_without_prefactor = sp.sympify(str_integral_without_prefactor.replace('+/-",
—'+«valueterrorx'))

integral_without_prefactor_err = sp.sympify(str_integral_without_prefactor.replace('+/

=", "xvaluet+errorx*"'))

examples how to access individual orders
print ('Numerical Result')

print ('eps”-2:', integral_with_prefactor.coeff('eps',-2).coeff ('value'), "+/- (',
—integral_with_prefactor_err.coeff('eps',-2).coeff('error’), ')'")

print ('eps”-1:', integral_with_prefactor.coeff('eps',-1).coeff('value'), '+/- (',
—integral_with_prefactor_err.coeff('eps',-1).coeff('error'), ')")

print ('eps”0 :', integral_with_prefactor.coeff('eps',0).coeff('value'), "+/- (',

—integral_with_prefactor_err.coeff('eps',0).coeff('error'), "))

An example of how to loop over several kinematic points is shown in the example integrate_boxIL_multiple_points.py.

2.2.4 C++ Interface (advanced)
Usually it is easier to obtain a numerical result using the Python Interface. However, the library can also be used
directly from C++. Inside the generated boxIL folder the file integrate_box1L. cpp demonstrates this.

After the lines parsing the input parameters, an secdecutil::Integrator is constructed and its parameters are
set:

// Set up Integrator
secdecutil::integrators: :Qmc<
box1L::integrand_return_t,
box1L: :maximal_number_of_integration_variables,
integrators::transforms: :Korobov<3>::type,
box1L: :user_integrand_t
> integrator;
integrator.verbosity = 1;

The amplitude is constructed via a call to name : :make_amplitudes () and packed into a name: :handler_t.

2.2. Evaluating a Loop Integral 11

pySecDec Documentation, Release 1.5.2

// Construct the amplitudes
std::vector<boxlL: :nested_series_t<boxlL::sum_t>> unwrapped_amplitudes =

box1L: :make_amplitudes (real_parameters, complex_parameters, "boxll,_coefficients", |
—integrator);

// Pack amplitudes into handler
box1L: :handler_t<boxlL::amplitudes_t> amplitudes
(
unwrapped_amplitudes,
integrator.epsrel, integrator.epsabs
// further optional arguments: maxeval, mineval, maxincreasefac, min_epsrel, min_
—epsabs, max_epsrel, max_epsabs
)i
amplitudes.verbose = true;

If desired, the contour deformation can be adjusted via additional arguments to name : :handler_t.
See also:

Section 4.1 and Section 5.9.1 for more detailed information about name::make amplitudes () and
name: :handler_t.

To numerically integrate the sum of sectors, the name : :handler_t::evaluate () function is called:

// compute the amplitudes
const std::vector<boxlL::nested_series_t<secdecutil::UncorrelatedDeviation
—<box1lL::integrand_return_t>>> result = amplitudes.evaluate();

The remaining lines print the result:

// print the result
for (unsigned int amp_idx = 0; amp_idx < boxlL::number_of_amplitudes; ++amp_idx)
std::cout << "amplitude" << amp_idx << " = " << result.at (amp_idx) << std::endl;

The C++ program can be built with the command:

’$ make integrate_box1L

A kinematic point must be specified when calling the integrate_box1L executable, the input format is:

’$./integrate_box1lL 4.0 -0.75 1.25 1.0

where the arguments are the real_parameters values for (s, t, sl, msqg). For integrals depending on
complex_parameters, their value is specified by a space separated pair of numbers representing the real and
imaginary part.

If your integral is higher than seven dimensional, changing the integral transform to
integrators::transforms: :Baker: :type may improve the accuracy of the result. For further op-
tions of the QMC integrator we refer to Section 4.6.2.

12 Chapter 2. Getting Started

pySecDec Documentation, Release 1.5.2

2.3 Evaluating a Weighted Sum of Integrals

New in version 1.5.

Let us examine example easy_ sum, which demonstrates how two weighted sums of dimensionally regulated integrals
can be evaluated. The example computes the following two weighted sums:

2s 11 + 3s I,

S S€
— L+ =1
% 1+ 3 2,

1 1
11:/ do:/ dy (z +y)~>*,
0 0
1 1
I, :/ dx/ dy (2x + 3y) <.
0 0

First, we import the necessary python packages and openthe if _ name_ == "_ _main__ " guard, as required
by multiprocessing.

where

#!/usr/bin/env python3

from pySecDec import Coefficient
from pySecDec import MakePackage
from pySecDec import sum_package

if name == main :

The common arguments for the integrals are collected in the common_args dictionary.

common_args = {}

common_args|['real parameters'] = ['s']
common_args|['regulators'] = ['eps']
common_args|['requested_orders'] = [0]

Next, the coefficients of the integrals for each weighted sum are specified. Each Coefficient is specified as alist of
numerator factors, list of denominator factors and a list of real or complex parameters on which the coefficient depends.
Coefficients can depend also depend the regulators, the sum_package function will automatically determine the
correct orders to which the coefficients and integrals should be expanded in order to obtain the requested_orders.

coefficients = [

[# suml
Coefficient (['2xs'],['1"'],['s"']), # easyl
Coefficient (['3*s"],["'1"'],["s']) # easy?2

]I

[# sum2
Coefficient(['s'],['2*eps'],['s"']), # easyl
Coefficient (['s*xeps'], ['3'],['s"]) # easy2

The integrals are specified using the MakePackage wrapper function (which has the same arguments as
make_package), for loop integrals the LoopPackage wrapper may be used (it has the same arguments as
loop_package).

2.3. Evaluating a Weighted Sum of Integrals 13

https://docs.python.org/3/library/multiprocessing.html

pySecDec Documentation, Release 1.5.2

integrals = [
MakePackage ('easyl',
integration_variables = ['x','y'],
polynomials_to_decompose = [' (xty)” (-2+eps) '],

*%xCcommon_args) ,

MakePackage ('easy2',
integration_variables = ['x','y'],
polynomials_to_decompose = [' (2xx+3xy) " (-1l+eps) '],
*%*Ccommon_args)

Finally, the list of integrals and coefficients are passed to sum_package. This will generate a C++ library which
efficiently evaluates both weighted sums of integrals, sharing the results of the integrals between the different sums.

generate code sum of (int % coeff)
sum_package ('easy_sum', integrals,
coefficients = coefficients, **common_args)

The generated C++ library can be compiled and called via the python and/or C++ interface as described above.

2.4 Using Expansion By Regions (Generic Integral)

New in version 1.5.

The example make_regions_ebr provides a simple introduction to the expansion by regions functionality within
pySecDec. For a more detailed discussion of expansion by regions see our paper [PSD21].

The necessary packages are loaded and the 1f __name_ == "__main__ " guard is opened.

#!/usr/bin/env python3
from pySecDec import sum_package, make_regions

if name == "__main__ ":

Expansion by regions is applied to a generic integral using the make_regions function.

regions_generators = make_regions (
name = 'make_regions_ebr',
integration_variables = ['x'],
regulators = ['delta'],
requested_orders = [0],
smallness_parameter = 't',
polynomials_to_decompose = [' (x)x*(delta)','(t + x + x**2)*%x(=-1)"],
expansion_by_regions_order = 0,
real_parameters = ['t'],
complex_parameters = [],
decomposition_method = 'geometric_infinity_no_primary',
polytope_from_sum_of=[1]

The output of make regions can be passed to sum_package in order to generate a C++ library suitable for
evaluating the expanded integral.

sum_package (
'make_regions_ebr',

(continues on next page)

14 Chapter 2. Getting Started

pySecDec Documentation, Release 1.5.2

(continued from previous page)

regions_generators,

regulators = ['delta'],
requested_orders = [0],
real_parameters = ['t']

The generated C++ library can be compiled and called via the python and/or C++ interface as described above.

2.5 Using Expansion By Regions (Loop Integral)

New in version 1.5.

The example generate_box1L_ebr demonstrates how expansion by regions can be applied to loop integrals
within pySecDec by applying it to the 1-loop box integral as described in Section 4.2 of [Mis18]. For a more detailed
discussion of expansion by regions see our paper [PSD21].

First, the necessary packages are loaded and the 1f __name_ == "__main__ " guard is opened.

#!/usr/bin/env python3

from pySecDec import sum_package, loop_regions
import pySecDec as psd

This example is the one-loop box example in Go Mishima's paper arXiv:1812.04373

if name == "__main__":

The loop integral can be constructed via the convenience functions in loop_ integral, here we use
LoopintegralFromGraph. Note that powerlist=["1+nl","1+nl/2","1+n1/3","1+nl/5"], here
nl is an extra regulator required to regulate the singularities which appear when expanding this loop integral. We
use the “trick” of introducing only a single regulator divided by different prime numbers for each power, rather than
unique regulators for each propagator (though this is also supported by pySecDec). Poles in the extra regulator nl
may appear in individual regions but are expected to cancel when all regions are summed.

here we define the Feynman diagram

1i = psd.loop_integral.LoopIntegralFromGraph (

internal_lines = [['mt', [3,1]],['mt", [1,2]],['mt",[2,4]],['mt", [4,3111],
external_lines = [['pl',1],['p2',2],['p3"',31,['p4",411,
powerlist=["1+nl","14n1/2","1+nl/3","14n1/5"],

regulators=["eps","nl"],

Feynman_parameters=["x%i" % i for i in range(l,5)], # renames the parameters to get_
—the same polynomials as in 1812.04373

replacement_rules = [
note that in those relations all momenta are incoming
general relations:
('plxpl', 'mlsq'),
('"p2*p2', 'm2sq'),
("p3+p3', 'm3sq'),
('p4xp4d', 'midsq'),
('plxp2', 's/2-(mlsg+m2sqg
(
(
(

(y/2"),
'plxp3', 't/2-(mlsg+m3sqg)/2'),
'plxpd', 'u/2-(mlsg+tmisqg)/2'),
"p2*p3', 'u/2-(m2sg+m3sq)/2"),

(continues on next page)

2.5. Using Expansion By Regions (Loop Integral) 15

pySecDec Documentation, Release 1.5.2

(continued from previous page)

p2*pd', 't/2-(m2sgtmidsq)/2'),
’p3*p4' 's/2- (m3sg+midsq) /2"'),
'u '(mlsgtm2sg+m3sgt+médsqg) -s-t'),

relatlons for our specific case:
'mlsg',0),

'm2sq',0),

'm3sqg', 'mHsq'),

'm4sqg', 'mHsq'),

('

(

(

#

('mt*xx2"', 'mtsqg'),
(

(

(

(

("mHsq', 0),

1)

Expansion by regions is applied to a loop integral using the 1oop_regions function. We expand around a small
mass mtsq.

find the regions

generators_args = loop_regions (
name = "boxlL_ebr",
loop_integral=1i,
smallness_parameter = "mtsqg",

expansion_by_regions_order=0)

The output of 1oop_regions can be passed to sum_package in order to generate a C++ library suitable for
evaluating the expanded integral.

write the code to sum up the regions

sum_package ("box1L_ebr",
generators_args,
li.regulators,
requested_orders = [0,0],
real_parameters = ['s','t','u', 'mtsg'],
complex_parameters = [])

The generated C++ library can be compiled and called via the python and/or C++ interface as described above.

2.6 List of Examples

Here we list the available examples. For more details regarding each example see [PSD17], [PSD18] and [PSD21].

16 Chapter 2. Getting Started

pySecDec Documentation, Release 1.5.2

easy: a simple parametric integral, described in Section 2.1

box1L: a simple 1-loop, 4-point, 4-propagator integral, described in Section 2.2
trian- a 2-loop, 3-point, 6-propagator diagram, also known as P126

gle2L:

box2L_num

epatomssless planar on-shell 2-loop, 4-point, 7-propagator box with a numerator, either defined
as an inverse propagator box2IL_invprop.py or in terms of contracted Lorentz vectors
box2L_contracted_tensor.py

pentabox_fina 2-loop, 5-point, 8-propagator diagram, evaluated in 6 — 2¢ dimensions where it is finite

trian- a 2-loop, 3-point, 7-propagator integral, demonstrates that the symmetry finder can significantly
gle3L: reduce the number of sectors

formfac- a single-scale 4-loop 3-point integral in 6 — 2¢ dimensions

tor4L:

bubble6L: | a single-scale 6-loop 2-point integral, evaluated at a Euclidean phase-space point

ellip- an integral known to contain elliptic functions, evaluated at a Euclidean phase-space point
tic2L_euclidean:

ellip- an integral known to contain elliptic functions, evaluated at a physical phase-space point

tic2L._physi

cal:

ba-

nana_3mass: evaluated at a physical phase-space point

a 3-loop 2-point integral with three different internal masses known to contain hyperelliptic functions,

hyperel- a 2-loop 4-point nonplanar integral known to contain hyperelliptic functions, evaluated at a physical
liptic: phase-space point

trian- a 2-loop, 3-point, 6-propagator integral without a Euclidean region due to special kinematics
gle2L_split:

Nbox2L_splitthree 2-loop, 4-point, S5-propagator integrals that need split=True due to special kinematics
hyper- a general dimensionally regulated parameter integral

geoSF4:

hz2L._nonplan#*loop, 4-point, 7-propagator integral with internal and external masses

box1L_ebr:| uses expansion by regions to expand a 1-loop box with a small internal mass, this integral is also
considered in Section 4.2 of [Mis18]

bub- uses expansion by regions to expand a 1-loop, 2-point integral in various limits

blelL_ebr:

bub- uses expansion by regions to expand a 1-loop, 2-point integral, demonstrates the ¢ and z methods

blelL_dotte

ddebaribed in [PSD21]

bub-
ble2L_large

uses expansion by regions to expand a 1-loop, 2-point integral with a large mass
m_ebr:

bub-

uses expansion by regions to expand a 1-loop, 2-point integral with a small mass

ble2L_smallm_ebr:

formfac- uses expansion by regions to compute various 1-loop, 3-point form factor integrals from the literature

torlL_ebr:

trian- uses expansion by regions to compute a 2-loop, 3-point integral with a large mass

gle2L._ebr:

make_regiopsiselbiexpansion by regions to compute a simple generic integral with a small parameter

easy_sum: | calculates the sum of two integrals with different coefficients, demonstrates the use of
sum_package

yyyylL: calculates a 1-loop 4-photon helicity amplitude, demonstrates the use of sum_package

two_regulatorst integral involving poles in two different regulators.

userde- a collection of examples demonstrating how to combine polynomials to be decomposed with other

fined_cpp: | user-defined functions

2.6. List of Examples

17

pySecDec Documentation, Release 1.5.2

18 Chapter 2. Getting Started

CHAPTER
THREE

OVERVIEW

pySecDec consists of several modules that provide functions and classes for specific purposes. In this overview, we
present only the most important aspects of selected modules. These are exactly the modules necessary to set up the
algebraic computation of a Feynman loop integral requisite for the numerical evaluation. For detailed instruction of a
specific function or class, please be referred to the reference guide.

3.1 The Algebra Module

The algebra module implements a very basic computer algebra system. pySecDec uses both sympy and numpy.
Although sympy in principle provides everything we need, it is way too slow for typical applications. That is because
sympy is completely written in python without making use of any precompiled functions. pySecDec’s algebra module
uses the in general faster numpy function wherever possible.

3.1.1 Polynomials

Since sector decomposition is an algorithm that acts on polynomials, we start with the key class Polynomial. As
the name suggests, the Polynomial class is a container for multivariate polynomials, i.e. functions of the form:

2 all=
i J

A multivariate polynomial is completely determined by its coefficients C; and the exponents ;. The Polynomial
class stores these in two arrays:

>>> from pySecDec.algebra import Polynomial
>>> poly = Polynomial ([[1,0], [0,2]1, ['A', 'B'])
>>> poly
+ (A)*x0 + (B)*x1x*2
>>> poly.expolist
array ([[1, O],
[0, 211)
>>> poly.coeffs
array ([A, B], dtype=object)

It is also possible to instantiate the Polynomial by its algebraic representation:

>>> poly2 = Polynomial.from_expression('Axx0 + Bxxlx*2', ['x0"','x1"])
>>> poly2
+ (A)*x0 + (B)*x1**2
>>> poly2.expolist
array ([[1, 0],

(continues on next page)

19

pySecDec Documentation, Release 1.5.2

(continued from previous page)

[0, 211)
>>> poly2.coeffs
array ([A, B], dtype=object)

Note that the second argument of Polynomial.from expression () defines the variables x;.

Within the Polynomial class, basic operations are implemented:

>>> poly + 1
+ (1) + (B)*x1*xx2 + (A)=*x0
>>> 2 % poly
+ (2xA) *x0 + (2#B) *x1*%2
>>> poly + poly
+ (24B) *x1xx2 + (2xA) *x0
>>> poly x poly
+ (Bx%2) *x1x*4 + (2+%AxB) *xx0xx1*x2 + (Axx2)xx0%xx2
>>> poly ** 2
+ (Bx*2) *x1**x4 + (2*AxB) *x0xx1**x2 + (Ax*2)x*x0%%2

3.1.2 General Expressions

In order to perform the pySecDec. subtraction and pySecDec.expansion, we have to introduce more
complex algebraic constructs.

General expressions can be entered in a straightforward way:

>>> from pySecDec.algebra import Expression
>>> log_of_x = Expression('log(x)', ['x'])
>>> log_of_x

log(+ (1) *x)

All expressions in the context of this algebra module are based on extending or combining the Polynomials
introduced above. In the example above, log_of_x is a LogOfPolynomial, which is a derived class from
Polynomial:

>>> type (log_of_x)
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> isinstance(log_of_x, Polynomial)

True
>>> log_of_x.expolist
array ([[111)

>>> log_of_x.coeffs
array ([1], dtype=object)

We have seen an extension to the Polynomial class, now let us consider a combination:

>>> more_complex_expression = log_of_x % log_of_x
>>> more_complex_expression
(log(+ (1)*x)) * (log(+ (1)=*x))

We just introduced the Product of two LogOfPolynomials:

>>> type (more_complex_expression)
<class 'pySecDec.algebra.Product'>

As suggested before, the Product combines two Polynomials. They are accessible through the factors:

20 Chapter 3. Overview

pySecDec Documentation, Release 1.5.2

>>> more_complex_expression.factors[0]

log(+ (1)=*x)

>>> more_complex_expression.factors[1]

log(+ (1)=*x)

>>> type (more_complex_expression.factors([0])
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> type (more_complex_expression.factors[1l])
<class 'pySecDec.algebra.LogOfPolynomial'>

Important: When working with this algebra module, it is important to understand that everything is based on the
class Polynomial.

To emphasize the importance of the above statement, consider the following code:

>>> expressionl = Expression('xxy', ['x', '
>>> expression2 = Expression('xxy', ['x'"'])
>>> type (expressionl)
<class 'pySecDec.algebra.Polynomial'>
>>> type (expression2)
<class 'pySecDec.algebra.Polynomial'>
>>> expressionl
+ (1) *x*y
>>> expression?2

v'l)

+ (y)*x

Although expressionl and expression2 are mathematically identical, they are treated differently by the alge-
bra module. In expressionl, both, x and vy, are considered as variables of the Polynomial. In contrast, y is
treated as coefficient in expression?2:

>>> expressionl.expolist
array ([[1, 111)

>>> expressionl.coeffs
array ([1], dtype=object)
>>> expression2.expolist
array ([[111)

>>> expression2.coeffs
array ([y], dtype=object)

The second argument of the function Expression controls how the variables are distributed among the coefficients
and the variables in the underlying Polynomials. Keep that in mind in order to avoid confusion. One can always
check which symbols are considered as variables by asking for the symbols:

>>> expressionl.symbols
[%x, V]

>>> expression2.symbols
[x]

3.1. The Algebra Module 21

pySecDec Documentation, Release 1.5.2

3.2 Feynman Parametrization of Loop Integrals

The primary purpose of pySecDec is the numerical computation of loop integrals as they arise in fixed order calcula-
tions in quantum field theories.

The conventions of pySecDec are fixed as follows: a Feynman graph G7""/'* in D dimensions at L loops with R

loop momenta in the numerator and N propagators, where the propagators can have arbitrary, not necessarily integer
powers v;, is considered to have the following representation in momentum space,

L
kﬂl'_.kﬂR
G:/HdDmN h s
=t H1 Py ({k} {p}.m3)
=

4—D
APk = B Pk, Pk}, {p}, m2) = (g2 — m2 +i5)

T2

where the g; are linear combinations of external momenta p; and loop momenta £;.

In the first step of our approach, the loop integral is converted from the momentum representation to the Feynman
parameter representation, see for example [HeiO8] (Chapter 3).

The module pySecDec. loop_integral implements exactly that conversion. The most basic use is to calculate
the first and the second Symanzik polynomial U and F, respectively, from the propagators of a loop integral.

3.2.1 One Loop Bubble

To calculate U and F of the one loop bubble, type the following commands:

>>> from pySecDec.loop_ integral import LoopIntegralFromPropagators

>>> propagators = ['kxx2', "(k — p)*xx2"]
>>> loop_momenta = ['k']
>>> one_loop_bubble = LoopIntegralFromPropagators (propagators, loop_momenta)

>>> one_loop_bubble.U
+ (1) *x0 + (1)=xx1

>>> one_loop_bubble.F
+ (—p**2) *x0xx1

The example above among other useful features is also stated in the full documenation of
LoopIntegralFromPropagators () in the reference guide.

3.2.2 Two Loop Planar Box with Numerator

Consider the propagators of the two loop planar box:

>>> propagators = ['klxx2'", " (kl+p2)*x2",
"(kl-pl)xx2"', " (k1-k2)**2",
' (k24p2) xx2"', " (k2-pl) **2",

Ce ' (k24p2+p3) **2"']

>>> loop_momenta = ['kl','k2"]

We could now instantiate the LoopIntegral just like before. However, let us consider an additional numerator:

>>> numerator = 'kl (mu)xkl (mu) + 2%kl (mu)+*p3 (mu) + p3(mu)*p3(mu)' # (k1 + p3) ** 2

In order to unambiguously define the loop integral, we must state which symbols denote the Lorentz_indices
(just mu in this case here) and the external_momenta:

22 Chapter 3. Overview

pySecDec Documentation, Release 1.5.2

>>> external_momenta = ['pl','p2','p3', 'pd']
>>> Lorentz_indices=['mu']

With that, we can Feynman parametrize the two loop box with a numerator:

>>> pbox = LooplIntegralFromPropagators (propagators, loop_momenta, external_momenta,
numerator=numerator, Lorentz_indices=Lorentz_

—indices)
>>> box.U

+ (1) *x3%*x6 + (1)*x3*x5 + (1)*x3*x4 + (1)*x2%x6 + (1)#*x2xx5 + (1)*x2xx4 + (1)*x2%x3
o+ (1) *x1xx6 + (1)*x1xx5 + (1)*xlsx4 + (1)*x1xx3 + (1)*x0xx6 + (1)*x0+xx5 + (1)*x0%x4_
—+ (1) *x0*x3
>>> box.F

+ (—plxx2 — 2xpl*p2 — 24pl*p3 — pP2*x2 — 24p2*p3 — P3**2) *x3*x5*x6 + (-

SP3**%2) *x3*xx4*x6 + (—pl**x2 — 2xpl*p2 — pP2**2)*x3*x4*x5 + (-pl**x2 — 2xpl*p2 — 2*xpl*p3
o= P2*x2 — 24p2*p3 — P34*2) #X24xX5%x6 + (—p3x%2) *xx2xx4xx6 + (—plkx2 - 24plxp2 —
SP2x*x2) xx2xx4xx5 + (-plxx2 — 24plxp2 — 24xplxp3 — P2**2 — 2xpP2*P3 — P3*x#2) *X2*xX3xx6 + |
o (—pl**x2 — 2¥pl*p2 — pP2*%2)*xx2*x3*x4 + (-pl**x2 — 2xpl*p2 — 2%pl*p3 — p2**x2 — 2*p2*p3
= P3**2) *x1*x54x6 + (—p3x*2) *x1*Ax4xx6 + (—plxx2 — 24pl*xp2 — p2*%2)*x1*x4xx5 + (-
p3*x2) *xX1*x3xx6 + (—pl*x2 — 2+pl*p2 — pP2+*2) *x1*x3%x5 + (—-plx*2 — 2xpl*p2 —
SP2xx2) xx1xx2xx6 + (-pl*x2 — 24pl*p2 — P24%2) *x14x2+*x5 + (—plx*2 — 2xplxp2 — |

SP2xx2) xx1xx2xx4 + (-pl*x2 — 24pl*p2 — P2*x2) *x1*x2%x3 + (—plx*x2 — 2xplxp2 — 2xpl*p3
= P24*x2 — 2+xp2+p3 — P3#x%2) *x0*x5+x6 + (—p3*%2) *x0*x4+x6 + (-pl**x2 — 2xpl*p2 —_
SP2*%2) *x0xx4*x5 + (—p2**2 — 2xp2*p3 — pP3**2) *x0xx3+*x6 + (-pl**2)*x0xx3*x5 + (-
P24 %2) *xX0xx3%x4 + (—pl**2) *x0*x2+x6 + (—pl**x2)*x0+*x2+x5 + (—pl**2)*x0%x2+xx4 + (-
SPLlx*2) *x0xx2xx3 + (—pP2xx2) *x0*x1*x6 + (—p2+%2) *x0xx1*xx5 + (—p2x%2)*x0*xx1xx4 + (-
SP2%x%2) *x0xx1xx3

>>> pbox.numerator

+ (24eps*p3 (mu) **x2 + 2%p3 (mu) **2) «Uxx2 + (eps — 2)*x6*F + (eps — 2)*x5«F + (eps —_

—

—2) *x4xF + (eps - 2)*x3%F + (—4xeps*p2 (mu)*p3 (mu) — 4xeps*xp3 (mu) x*x2 —
—4xp2 (mu) *p3 (mu) — 4xp3 (mu) **x2) *x3%x6%U + (4 eps*pl (mu)«p3 (mu) +_
—4*xpl (mu) *p3 (mu)) *x3*x5+U + (—4*xeps*p2 (mu)*p3 (mu) - 4*p2 (mu)*p3 (mu)) *x3*x4+U +_

— (2xeps*p2 (mu) **2 + 4xeps*p2 (mu) *p3 (mu) + 2xeps*xp3 (mu) **x2 + 2*p2 (mu) **2 +
—4xp2 (mu) *p3 (mu) + 2xp3 (mu) **x2) *xX3*%*x24xx6**2 + (—4xepsxpl (mu)*p2 (mu) -
—4xeps*pl (mu) *p3 (mu) - 4*pl (mu)*p2 (mu) — 4*pl (mu)*p3 (mMu)) *xX3**2*x5x%x6 +_

— (2xeps*pl (mu) **2 + 2*pl (mu) *x*2) *x3**x2xx5%*2 + (4dxeps*p2 (mu) **2 +
—dxeps*p2 (mu) *p3 (mu) + 4xp2 (mu) **x2 + 4%p2 (mu) «p3 (mu)) *x3*x2+x4*x6 + (-
—4xeps*pl (mu) *p2 (mu) - 4*pl (mu)*p2 (mu)) *x3**2+xx4*x5 + (2xeps*p2 (mu) x*2 +_,

—2*p2 (mu) **2) *x3*xx2xx4%%2 + (4xeps*pl (mu)*p3 (mu) + 4*pl (mu)*p3 (mu)) *x2+x6xU +_
— (4dxeps*pl (mu) *p3 (mu) + 4xpl (mu)*p3 (mu)) *x2+x5xU + (4*epsxpl (mu) *p3 (mu) +_
—4xpl (mu) *p3 (mu)) *x2+xx4+xU + (4xeps*pl (mu)*xp3 (mu) + 4xpl (mu)*p3 (mu)) *x2xx3xU + (-

—4xeps*pl (mu) *p2 (mu) - 4*epsx*pl (mu) *p3 (mu) - 4xpl(mu) *p2 (mu) -

—4xpl (mu) *p3 (Mu)) *X2*xx3*x6%x%x2 + (4dxepsxpl (mu) **x2 — 4*epsx*pl (mu) *xp2 (mu) -,
—4xeps*pl (mu) *p3 (mu) + 4*pl(mu)**2 — 4xpl (mu)*p2 (mu) - 4xpl(mu) *p3 (mMu)) *x2*x3*xX5+%x6_,
—+ (4dxepsxpl (mu) **x2 + 4*pl(mu) **2) *x2xx3*x5%%2 + (—-8*epsxpl (mu) *p2 (mu) -,
—4dxeps*pl (mu) *p3 (mu) - 8+*pl (mu)*p2 (mu) - 4*pl (mu)*p3 (mMu)) *xX2+x3+x4%xX6 + |

— (dxeps*pl (mu) **x2 — 4dxeps*pl (mu) *p2 (mu) + 4xpl (mu)**x2 — 4*pl (mu) *p2 (mu)) *xX2+x3+%x4*x5
—+ (—4xeps*pl (mu) *p2 (mu) - 4xpl(mu) *p2 (mu)) *x2*x3*x4**2 + (—4dxeps*pl (mu)*p2 (mu) —
—4dxeps*pl (mu) *p3 (mu) - 4+*pl (mu)*p2 (mu) - 4*pl (mu)*p3 (Mu)) *X2*X3**%2%X6 +

— (dxeps*pl (mu) **2 + 4xpl(mu) **2) *x2*x3%%2xx5 + (—4xeps*pl (mu) *p2 (mu) -,

—4xpl (mu) *p2 (mu)) *xX2*x3**2xx4 + (2xeps*pl (mu) **x2 + 2+pl(mu) **2) *X2x*x2*x6**x2 +_,
— (dxeps*pl (mu) **2 + 4xpl (mu) **2) *x2+*x2xx5+x6 + (2xeps*pl (mu) **2 + |

—2xpl (Mu) *#%2) *X24%x24x5%%2 + (4dxeps*pl (mu) «*x2 + 4*pl (mu) *%2) *xX2**2xx4*xx6 +_

— (dxeps*xpl (mu) **2 + 4*pl (mu) **2) *x2*x2xx4*x5 + (2xeps*pl (mu) **2 +

S2+pl (Mu) *#%2) *xX24%x24x4%%2 + (dxeps*pl (mu) %2 + 4xpl (mu) #2) *X2**2xx3*xx6 +_

— (dxeps*pl (mu) **2 + 4xpl (mu) x*2) *x2x+2+x3%xx5 + (4xepsxpl (mu) x*2 +_

—4xpl (mu) **2) *xX2%%2%x3*xx4 + (2*eps*pl (mu) **2 + 2xpl (mMu) **2) *X2x*x2*x3%*2 + (—

—4dxeps*p2 (mu) *p3 (mu) — 4xp2 (mu) *p3 (mu)) *x1+x6+U + (~4xeps*p2 (mu)xp3 (mu) -
. 4%p2 (mu) +p3 (mu)) *x1+x5+U + (~4xeps«p2 (mu)+p3 (mu) - 4+p2 (mu) +p3 (mu)) +x1LLHURYCS OnIeXt page)
—4dxeps*p2 (mu) *p3 (mu) — 4*p2 (mu)*p3 (mu)) *x1*x3*xU + (4d*xeps*xp2 (mu) **2 +_

3.2 Fe ﬁﬁ\gﬁuﬁ’a éﬁ‘i‘&hzat%ﬁ%“ié %nfeéréﬁs(mu *P3 (mu)) xx1xx3xx6xx2 + (- 23

q4*ep *pl (mu) * 4dxeps*p u * K 4dxeps*xp2 (mu) *p3 (mu) — 4%pl (mu)*p2 (mu) +
—4*p2 (mu) **2 + 4xp2 (mu) *p3 (mu)) *x1*x3xx5*x6 + (—4+xepsx*pl (mu)*p2 (mu) —_,

—4xpl (mu) *p2 (mu)) *x1*x3+x5%x%x2 + (8xeps*p2 (mu) **x2 + 4xepsx*xp2 (mu) *p3 (mu) + 8xp2 (mu) **2_,
—t 4%p2 (mu) *p3 (mu)) *x1*x3xx4+x6 + (—4xeps*pl (mu) *p2 (mu) + 4xeps*p2 (mu) **2 —

—

—

pySecDec Documentation, Release 1.5.2

(continued from previous page)

We can also generate the output in terms of Mandelstam invariants:

>>> replacement_rules = [
'plxpl', 0),
'p2xp2', 0),
'p3xp3', 0),

(
(
(
("pdxpdt, 0),
('plxp2', 's/2"),
("p2xp3', 't/2"),
("pl*p3', '-s/2-t/2")
- 1
>>> pbox = LoopIntegralFromPropagators (propagators, loop_momenta, external_momenta,
e numerator=numerator, Lorentz_indices=Lorentz_
—indices,
e replacement_rules=replacement_rules)
>>> box.U
+ (1) #x3%x6 + (1) *x3%x5 + (1)*x3*x4 + (1)*x2%x6 + (1)*x2%x5 + (1)*x2+x4 + (1)*x2%x3_,
=+ (1) *x1xx6 + (1)*x1xx5 + (1) xl*x4 + (1)*x1*x3 + (1)*x0xx6 + (1)*x0xx5 + (1) x0%x4_
—+ (1) *x0*x3
>>> box.F
+ (—8) *xX3#%xX4%x5 + (—s8)*xX2#xX4%xX5 + (—s)*xX2*xX3%xX4 + (—s)*x1*x4%x5 + (—s)*x1*x3%x5 + (-
8) *xX1*x2*X6 + (—8) *xX1*x2*x5 + (—8)*x1*x2+x4 + (—-8)*x1*x2+x3 + (—-s)*x0*x4xx5 + (-
—t) *x0*xx3%*x6
>>> box.numerator
+ (eps — 2)*x6xF + (eps — 2)*x5+F + (eps — 2)*x4*F + (eps — 2)*x3xF + (-2xepsxt —
2%xt) *x3xx6xU + (—2%epsxs — 2xeps*t — 2xs — 2xt) *xx3xx5+xU + (—2xeps*t — 2xt) *x3*x4+U_,
=t (24xeps*t + 2xt) *X3x*x2xxX6%x%2 + (2xepsxt + 2xt) *x3xx2xx5%x6 + (2xeps*t +
2%t) *X3xx2xX4%xX6 + (—2xepS*S — 2%S) *X3*x*x24x4%xx5 + (—2%eps*s — 2xeps*t — 2xs —
—2%t) *x2xx6+xU + (—2xeps*s — 2xeps*t — 2xs — 2xL)*x2+x5xU + (-2%epsxs — 2xepsxt — 2%s
o= 2%t) *x2xx4xU + (—2xepsxs — 2xeps*xt — 2xs — 2xt)*xx2xx3%xU + (2xepsx*t + |

S2%xt) #X2xX3xX6%x %2 + (2xepsxt + 24t) xx2xx3*xx5%x6 + (—-2xeps*s + 2xepsxt — 2xs + |
2%t) *X2xX3*xX4*xX6 + (—2xepsS*S — 2%3) *X2*xx3*x4*xX5 + (—2%eps*s — 2%S) *X2*X3xxX4x*x2 + |
— (2%xeps*t + 2xL) *X24X3*x*x2xX6 + (—2*xepsxs — 2%S) *X2xxX3*x*x2%x4 + (—2xeps*t —

S2%t) *x1xx6xU + (=2xeps*xt — 2+t) x»x1xx5xU + (=2xeps*t — 2xt)*xx1xx4xU + (—2xepsx*t —_,
S2%xt) *x1xx3xU + (2%eps*t + 2+t) *x1*xX3*xxX6%x%2 + (—2xeps*s + 2xepsxt — 2%s +_,

2%t) *x1*x3xx5xx6 + (—2xepsxs — 2%s) *xX1xx3*x5%%2 + (2xeps*t + 2xt) *xL*x3xx4xx6 + (-
2*epsS*S — 2%8) *x1xx3*x4+x5 + (2+xeps*t + 2+t) *xX1xx3**2%x6 + (-2 epsxs — |

2%8) *X1*xx3xx2%xx5 + (—2xeps*xsS — 2%35) *X1*xxX2%x6%x*x2 + (—4xeps*s — 4xs)*x1* x2xx5xx6 + (-
—2*eps*s — 2%5) *xX1xx2xx5%%x2 + (—4*epsxs — 4%5)*xx1*xx2+*x4%xx6 + (—4xepsxs —
4x8) X1 *x2xxX4%xx5 + (—2xeps*S — 2%5) *X1*xxX24x4%*x2 + (—4xeps* s — 4xs)*x1*+x2xx3xxX6 + (-
—dxeps*s — 4xs) *x1xx2+xx3%x5 + (—4d*epsxs — 4%5)*xx1*x2+x3*x4 + (-2xeps*xs —_,

—2%8) *X1*X2*xX3*x*2

3.3 Sector Decomposition

The sector decomposition algorithm aims to factorize the polynomials P; as products of a monomial and a polynomial
with nonzero constant term:

Fi({zj}) — H x;’ (const +pi({z;})).-

24 Chapter 3. Overview

pySecDec Documentation, Release 1.5.2

Factorizing polynomials in that way by expoliting integral transformations is the first step in an algorithm for solving
dimensionally regulated integrals of the form

R G

The iterative sector decomposition splits the integral and remaps the integration domain until all polynomials P;
in all arising integrals (called sectors) have the desired form const + polynomial. An introduction to the sector
decomposition approach can be found in [HeiO8].

To demonstrate the pySecDec. decomposition module, we decompose the polynomials

>>> pl = Polynomial.from_expression('x + Axy', ['x','yv','z'])
[

4 4
"ty Tzt)

>>> p2 = Polynomial.from_expression('x + Bxyxz',

Let us first focus on the iterative decomposition of pl. In the pySecDec framework, we first have to pack p1l into a
Sector:

>>> from pySecDec.decomposition import Sector

>>> initial_sector = Sector([pl])
>>> print (initial_sector)

Sector:

Jacobian= + (1)

cast=[(+ (1)) = (+ (1)*x + (A)*y)]
other=1[]

We can now run the iterative decomposition and take a look at the decomposed sectors:

>>> from pySecDec.decomposition.iterative import iterative_decomposition
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:

print (sector)

print ('\n")

Sector:

Jacobian= + (1) *x

cast=[(+ (1)*x) = (+ (1) + (A)~*y)]
other=[]

Sector:

Jacobian= + (1)xy

cast=[(+ (1)*»y) = (+ (L)xx + (A))]
other=[]

The decomposition of p2 needs two iterations and yields three sectors:

>>> initial_sector = Sector([p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:

print (sector)

print ('"\n")
Sector:
Jacobian= + (1) *x
cast=[(+ (L)*x) * (+ (1) + (B)*yxz)]
other=[]

(continues on next page)

3.3. Sector Decomposition 25

pySecDec Documentation, Release 1.5.2

(continued from previous page)

Sector:

Jacobian= + (1) *xxy

cast=[(+ (1)*x*xy) = (+ (1) + (B)xz)]
other=[]

Sector:

Jacobian= + (1)xy*z

cast=[(+ (1)ry*z) = (+ (1)»x + (B))]
other=[]

Note that we declared z as a variable for sector p1 evne though it does not depend on it. This declaration is necessary
if we want to simultaneously decompose p1 and p2:

>>> initial_sector = Sector([pl, p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:

print (sector)

print ('\n")

Sector:

Jacobian= + (1) *x

cast=[(+ (1)*x) » (+ (1) + (A)*y), (+ (1)*x) * (+ (1) + (B)*y*z)]
other=1[]

Sector:

Jacobian= + (1) *xxy

cast=[(+ (1)*xy) = (+ (L)»x + (A)), (+ (1)y*x*y) * (+ (1) + (B)xz)]
other=1[]

Sector:

Jacobian= + (1)*y*z

cast=[(+ (1)*y) * (+ (L)»x*xz + (A)), (+ (1)*xy*xz) » (+ (1)*x + (B))]
other=[]

We just fully decomposed pl and p2. In some cases, one may want to bring one polynomial, say p1, into standard
form, but not neccessarily the other. For that purpose, the Sector can take a second argument. In the following
code example, we bring pl into standard form, apply all transformations to p2 as well, but stop before p2 is fully
decomposed:

>>> initial_sector = Sector([pl], I[p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
print (sector)
print ("\n")
Sector:
Jacobian= + (1) *x
cast=[(+ (1)*x) » (+ (1) + (A)=*y)]
other=[+ (1)*x + (B)*x*y=*z]

Sector:

(continues on next page)

26 Chapter 3. Overview

pySecDec Documentation, Release 1.5.2

(continued from previous page)

Jacobian= + (1)x*y
cast=[(+ (1)xy) = (+ (1)»x + (A))]
other=[+ (1)#*x*y + (B)*y*z]

3.4 Subtraction

In the subtraction, we want to perform those integrations that lead to e divergencies. The master formula for one
integration variables is

el 1 T0)(0, ¢)

1 1
@)L (2,)da =) + / (@I R(z, €)d
x z, €)dx x x,€)dz
/0 (@) = a+p+1—>be p 0 (@,6)

where Z(P) is denotes the p-th derivative of Z with respect to . The equation above effectively defines the remainder
term R. All terms on the right hand side of the equation above are constructed to be free of divergencies. For more
details and the generalization to multiple variables, we refer the reader to [Hei08]. In the following, we show how to
use the implementation in pySecDec.

To initialize the subtraction, we first define a factorized expression of the form (=1 =0=¢)y(=2=bye)T (z,y,€):

>>> from pySecDec.algebra import Expression

>>> symbols = ['x','y', 'eps']

>>> x_monomial = Expression('x*x (-1 - b_x*eps)', symbols)
>>> y_monomial = Expression('yx* (-2 - b_y*eps)', symbols)
>>> cal_I = Expression('cal I(x, vy, eps)', symbols)

We must pack the monomials into a pySecDec.algebra.Product:

>>> from pySecDec.algebra import Product
>>> monomials = Product (x_monomial, y_monomial)

Although this seems to be to complete input according to the equation above, we are still missing a structure to store
poles in. The function pySecDec. subtraction.integrate_pole_part () is designed to return an iterable
of the same type as the input. That is particularly important since the output of the subtraction of one variable is
the input for the subtraction of the next variable. We will see this iteration later. Initially, we do not have poles yet,
therefore we define a one of the required type:

>>> from pySecDec.algebra import Pow

>>> import numpy as np

>>> polynomial_one = Polynomial (np.zeros([1l,len(symbols)], dtype=int), np.array([1l]),
—symbols, copy=False)

>>> pole_part_initializer = Pow(polynomial_one, -polynomial_one)

[

pole_part_initializer is of type pySecDec.algebra.Pow and has -polynomial_one in the expo-
nent. We initialize the base with polynomial_one;i.e. a one packed into a polynomial. The function pySecDec.
subtraction.integrate_pole_part () populates the base with factors of be when poles arise.

We are now ready to build the subtraction_initializer - the pySecDec.algebra.Product to be
passed into pySecDec. subtraction.integrate_pole_part ().

>>> from pySecDec.subtraction import integrate_pole_part
>>> subtraction_initializer = Product (monomials, pole_part_initializer, cal_TI)
>>> x_subtracted = integrate_pole_part (subtraction_initializer, 0)

3.4. Subtraction 27

pySecDec Documentation, Release 1.5.2

The second argument of pySecDec. subtraction.integrate_pole_part () specifies to which variable we
want to apply the master formula, here we choose x. First, remember that the x monomial is a dimensionally regulated
x~ 1. Therefore, the sum collapses to only one term and we have two terms in total. Each term corresponds to one
entry in the list x_subtracted:

>>> len (x_subtracted)
2

x_subtracted has the same structure as our input. The first factor of each term stores the remaining monomials:

>>> x_subtracted[0].factors[0]

(C+ (1))**x(+ (-b_x)xeps + (-1))) > ((+ (L)*y)*x*(+ (-b_y)*eps + (-2)))
>>> x_subtracted[1l].factors[0]
((+ (1)*x)*x(+ (“b_x)xeps + (-1))) = ((+ (L)*y)**x(+ (-b_y)*eps + (-2)))

The second factor stores the € poles. There is an epsilon pole in the first term, but still none in the second:

>>> x_subtracted[0].factors[1]

(+ (“b_x)xeps) *x (+ (=1))
>>> x_subtracted[l].factors[1]
(+ (1)) =~ (+ (1))

The last factor catches everything that is not covered by the first two fields:

>>> x_subtracted[0].factors[2]

(cal_T(+ (0), + (1)*y, + (1)~*eps))

>>> x_subtracted[1l].factors[2]

(cal_T(+ (1)*x, + (1)xy, + (l)xeps)) + ((+ (-1)) % (cal_I(+ (0), + (1)xy, +
< (1) xeps)))

[

We have now performed the subtraction for z. Because in and output have a similar structure, we can easily perform
the subtraction for y as well:

>>> x_and_y_subtracted = []
>>> for s in x_subtracted:
x_and_y_subtracted.extend(integrate_pole_part(s,1l))

Alternatively, we can directly instruct pySecDec. subtraction.integrate_pole _part () to perform both
subtractions:

’>>> alternative_x_and_y_subtracted = integrate_pole_part (subtraction_initializer,0,1)

In both cases, the result is a list of the terms appearing on the right hand side of the master equation.

3.5 Expansion

The purpose of the expansion module is, as the name suggests, to provide routines to perform a series ex-
pansion. The module basically implements two routines - the Taylor expansion (pySecDec.expansion.
expand_Taylor ()) and an expansion of polyrational functions supporting singularities in the expansion variable
(pySecDec.expansion.expand_singular()).

28 Chapter 3. Overview

pySecDec Documentation, Release 1.5.2

3.5.1 Taylor Expansion

The function pySecDec.expansion.expand_Taylor () implements the ordinary Taylor expansion. It takes
an algebraic expression (in the sense of the algebra module, the index of the expansion variable and the order to which
the expression shall be expanded:

>>> from pySecDec.algebra import Expression
>>> from pySecDec.expansion import expand_Taylor

>>> expression = Expression('xxxeps', ['eps'])
>>> expand_Taylor (expression, 0, 2).simplify ()
+ (1) + (log(+ (x)))*eps + ((log(+ (x))) * (log(+ (x))) *= (+ (1/2)))~epsx*2

It is also possible to expand an expression in multiple variables simultaneously:

>>> expression = Expression('xxx (eps + alpha)', ['eps', 'alpha'])
>>> expand_Taylor (expression, [0,1], [2,0]).simplify ()
+ (1) + (log(+ (x)))*eps + ((log(+ (x))) * (log(+ (x))) * (+ (1/2)))*eps**2

The command above instructs pySecDec . expansion.expand_Taylor () toexpand the expression to the
second order in the variable indexed O (eps) and to the zeroth order in the variable indexed 1 (alpha).

3.5.2 Laurent Expansion

pySecDec.expansion.expand_singular () Laurent expands polyrational functions.

Its input is more restrictive than for the Taylor expansion. It expects a Product where the factors are either
Polynomialsor ExponentiatedPolynomials with exponent = -1:

>>> from pySecDec.expansion import expand_singular
>>> expression = Expression('l/(eps + alpha)', ['eps', 'alpha']).simplify ()
>>> expand_singular (expression, 0, 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 241, in_,
—expand_singular
return _expand_and_flatten (product, indices, orders, _expand_singular_step)
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 209, in _
—expand_and_flatten
expansion = recursive_expansion (expression, indices, orders)
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 198, in_
—recursive_expansion
expansion = expansion_one_variable (expression, index, order)
File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 82, in _
—expand_singular_step
raise TypeError (' product® must be a "Product’ ')
TypeError: “product’ must be a "Product’

>>> expression # ' ‘expression’ ' is indeed a polyrational function.

(+ (1)*alpha + (1)*eps)**(-1)

>>> type (expression) # It is just not packed in a "~ ‘Product ' as ' ‘expand_singular' '
—expects.

<class 'pySecDec.algebra.ExponentiatedPolynomial'>
>>> from pySecDec.algebra import Product

>>> expression = Product (expression)
>>> expand_singular (expression, 0, 1)
+ ((+ (1)) = ((+ (1)xalpha)*x(=1))) + ((+ (=1)) * ((+ (1)xalphax*2)*x(-1))) reps

3.5. Expansion 29

pySecDec Documentation, Release 1.5.2

Like in the Taylor expansion, we can expand simultaneously in multiple parameters. Note, however, that the result
of the Laurent expansion depends on the ordering of the expansion variables. The second argument of pySecDec.
expansion.expand_singular () determines the order of the expansion:

>>> expression = Expression('l/ (2+eps) * 1/(eps + alpha)', ['eps', 'alpha'l).
—simplify ()
>>> eps_first = expand_singular (expression, [0,1]1, [1,1])

>>> eps_first
+ 0+ (1/2)) = (4 (1))*x(=1)))*epsxx—lxalphaxx-1 + ((+ (=1/2)) = ((+ (1))*x(=

—1)))*alphaxx—2 + ((+ (1)) %= ((+ (2))*xx(-1)))*epsxalpha*x*-3
>>> alpha_first = expand_singular (expression, [1,0], [1,11)
>>> alpha_first
00+ (1/2)) = ((+ (1)) **(=1)))*xeps**=2 + ((+ (=1/2)) * ((+ (1)) **(=-1))) ~eps**-
—3xalpha

The expression printed out by our algebra module are quite messy. In order to obtain nicer output, we can convert
these expressions to the slower but more high level sympy:

>>> import sympy as sp

>>> eps_first = expand_singular (expression, [0,1]1, [1,1])
>>> alpha_first = expand_singular (expression, [1,0], [1,1])
>>> sp.sympify (eps_first)

1/ (2+xalpha*eps) - 1/ (2xalpha**2) + eps/(2xalphaxx3)

>>> sp.sympify(alpha_first)
—alpha/ (2xeps**x3) + 1/ (2xeps**2)

30 Chapter 3. Overview

CHAPTER
FOUR

SECDECUTIL

SecDecUtil is a standalone autotools-c++ package, that collects common helper classes and functions needed by the
c++ code generated using 1oop_package or make _package. Everything defined by the SecDecUtil is put into
the c++ namepace secdecutil.

4.1 Amplitude

A collection of utilities for evaluating amplitudes (sums of integrals multiplied by coefficients).

4.1.1 Weightedintegral
A class template containing an integral, I, and the coefficient of the integral, C. A WeightedIntegral is inter-
preted as the product C+ I and can be used to represent individual terms in an amplitude.

template<typename integral_t, typename coefficient_t>
struct WeightedIntegral

std::shared_ptr<integral_t> integral,;
A shared pointer to the integral.

coefficient_t coefficient;
The coefficient which will be multiplied on to the integral.

std::string display_name = "WINTEGRAL",
A string used to indicate the name of the current weighted integral.

WeightedIntegral (const std::shared_ptr<integral_t> &integral, const coefficient_t
&ecoefficient = coefficient_t(1))

The arithmetic operators (+, —, *, /) are overloaded for WeightedIntegral types.

4.1.2 WeightedintegralHandler

A class template for integrating a sum of WeightedIntegral types.

template<typename integrand_return_t, typename real_t, typename coefficient_t, templat

bool verbose
Controls the verbosity of the output of the amplitude.

31

pySecDec Documentation, Release 1.5.2

real_tmin_decrease_factor
If the next refinement iteration is expected to make the total time taken for the code to run longer
than wall_clock_limit then the number of points to be requested in the next iteration will
be reduced by at least min_decrease_factor.

real_t decrease_to_percentage
If remaining_time » decrease_to_percentage >
time_for_next_iteration then the number of points requested in the next re-
finement iteration will be reduced. Here: remaining_time = wall_clock_limit -
elapsed_time and time_for_next_iteration is the estimated time required for the
next refinement iteration. Note: if this condition is met this means that the expected precision
will not match the desired precision.

real_twall clock_ limit
If the current elapsed time has passed wall_clock limit and a refinement iteration finishes
then a new refinement iteration will not be started. Instead, the code will return the current
result and exit.

size_t number_ of threads
The number of threads used to compute integrals concurrently. Note: The integrals themselves
may also be computed with multiple threads irrespective of this option.

size_t reset_cuda_after
The cuda driver does not automatically remove unnecessary functions from the device memory
such that the device may run out of memory after some time. This option controls after how
many integrals cudaDeviceReset () is called to clear the memory. With the default 0,
cudaDeviceReset () is never called. This option is ignored if compiled without cuda.

const container_t<std::vector<term_t>> &expression
The sum of terms to be integrated.

real_t epsrel
The desired relative accuracy for the numerical evaluation of the weighted sum of the sectors.

real_t epsabs
The desired absolute accuracy for the numerical evaluation of the weighted sum of the sectors.

unsigned long long int maxeval
The maximal number of integrand evaluations for each sector.

unsigned long long int mineval
The minimal number of integrand evaluations for each sector.

real_t maxincreasefac
The maximum factor by which the number of integrand evaluations will be increased in a single
refinement iteration.

real_tmin_epsrel
The minimum relative accuracy required for each individual sector.

real_tmin_epsabs
The minimum absolute accuracy required for each individual sector.

real_t max_epsrel
The maximum relative accuracy assumed possible for each individual sector. Any sector known
to this precision will not be refined further. Note: if this condition is met this means that the
expected precision will not match the desired precision.

real_t max_epsabs
The maximum absolute accuracy assumed possible for each individual sector. Any sector

32 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

known to this precision will not be refined further. Note: if this condition is met this means
that the expected precision will not match the desired precision.

ErrorMode errormode
With enum ErrorMode : int { abs=0, all, largest, real, imag};

Defines how epsrel and epsabs are defined for complex values. With the choice largest,
the relative uncertainty is defined as max(|Re(error) |, |Im(error) |)/max(

|Re (result) |, |Im(result) |). Choosing all will apply epsrel and epsabs to both
the real and imaginary part separately.

4.2 Series

A class template for containing (optionally truncated) Laurent series. Multivariate series can be represented as series
of series.

This class overloads the arithmetic operators (+, —, *, /) and the comparator operators (==, ! =). A string representa-
tion can be obtained using the << operator. The at (i) and [i] operators return the coefficient of the i™ power of
the expansion parameter. Otherwise elements can be accessed identically to std: : vector.

template<typename T>
class Series

std::string expansion_parameter
A string representing the expansion parameter of the series (default x)

int get_order_min () const
Returns the lowest order in the series.

int get_order_max () const
Returns the highest order in the series.

bool get_truncated_above () const
Checks whether the series is truncated from above.

bool has_term (int order) const
Checks whether the series has a term at order order.

Series (int order_min, int order_max, std::vector<7> content, bool truncated_above = true,
const std::string expansion_parameter = "X")

Example:

#include <iostream>
#include <secdecutil/series.hpp>

int main ()
{

secdecutil::Series<int> exact(-2,1,{1,2,3,4},false,"eps");

secdecutil::Series<int> truncated(-2,1,{1,2,3,4},true,"eps");

secdecutil::Series<secdecutil::Series<int>> multivariate (1,2,

{
{-2,-1,{1,2}, false,

—"alpha"},

{-2,-1,{3,4}, false,
—~"alpha"},

},false, "eps"

)i

(continues on next page)

4.2. Series 33

pySecDec Documentation, Release 1.5.2

(continued from previous page)

std::cout << "exact: " << exact << std::endl;
std::cout << "truncated: " << truncated << std::endl;
std::cout << "multivariate: " << multivariate << std::endl << std::endl;
std::cout << "exact + 1: " << exact + 1 << std::endl;
std::cout << "exact % exact: " << exact % exact << std::endl;
std::cout << "exact % truncated: " << exact * truncated << std::endl;
std: :cout << "exact.at (-2): " << exact.at (-2) << std::endl;

}

Compile/Run:

$ c++ —-IS{SECDEC_CONTRIB}/include -std=c++14 example.cpp -0 example -1lm && ./example

Output:

exact: + (1) *eps”™-2 + (2)*eps”™-1 + (3) + (4)xeps

truncated: + (1) *eps”-2 + (2)*eps”™-1 + (3) + (4)*eps + O(eps”2)

multivariate: + (+ (1)*alpha”-2 + (2)*alpha”-1)x*eps + (+ (3)~*alpha”-2 + (4)~*alpha”-
—1) xeps”2

exact + 1: + (1) *eps”™=2 + (2)xeps”™-1 + (4) + (4)xeps

exact * exact: + (1) *eps”™-4 + (4)x*eps”™-3 + (10)+*eps”™-2 + (20)*eps™-1 + (25) +
— (24) xeps + (16) xeps”2

exact * truncated: + (1)x*eps™-4 + (4)xeps”-3 + (10)*eps”-2 + (20)*eps™-1 + O(eps”0)
exact.at (-2): 1

[

4.3 Deep Apply

A general concept to apply a std: : function to a nested data structure. If the applied std: : function is not
void then deep_apply () returns a nested data structure of the return values. Currently secdecutil implements this
for std: :vector and Series.

This concept allows, for example, the elements of a nested series to be edited without knowing the depth of the nested
structure.

template<typename Tout, typename Tin, template<typename...> class Tnest>
Tnest<Tout> deep_apply (Tnest<Tin> &nest, std::function<Tout) Tin
> &func

Example (complex conjugate a Series):

#include <iostream>

#include <complex>

#include <secdecutil/series.hpp>
#include <secdecutil/deep_apply.hpp>

int main ()
{
std::function<std::complex<double> (std::complex<double>)> conjugate =
[1 (std::complex<double> element)
{
return std::conj(element);
}i

(continues on next page)

34 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

(continued from previous page)

secdecutil::Series<std::complex<double>> u(-1,0,{{1,2},{3,4}},false,"eps");
secdecutil::Series<secdecutil::Series<std::complex<double>>> m(1l,1,{{1,1,{{1,2}},
—~false,"alpha"}, }, false, "eps");

std::cout << "u: " << u << std::endl;

std::cout << "m: " << m << std::endl << std::endl;

std::cout << "conjugated u: " << secdecutil::deep_apply(u, conjugate) <<
—std::endl;

std::cout << "conjugated m: " << secdecutil::deep_apply(m, conjugate) <<,

—std::endl;
}

Compile/Run:

$ c++ —-IS{SECDEC_CONTRIB}/include -std=c++14 example.cpp -o example -1lm && ./example

Output:

u: + ((1,2))=xeps”™-1 + ((3,4))
m: + (+ ((1,2))*alpha) xeps

(1,-2))*eps”™-1 + ((3,-4))

conjugated u: + (
(+ ((1,-2))+*alpha) xeps

conjugated m: +

4.4 Uncertainties

A class template which implements uncertainty propagation for uncorrelated random variables by overloads of the +,
—, = and partially /. Division by UncorrelatedDeviation is not implemented as it is not always defined. It has
special overloads for std: : complex<T>.

Note: Division by UncorrelatedDeviation is not implemented as this operation is not always well defined.
Specifically, it is ill defined in the case that the errors are Gaussian distributed as the expectation value,

B H — 7 Lxax,

where

o) = e (-0,

is undefined in the Riemann or Lebesgue sense. The rule §(a/b) = |a/b|+/(6a/a)? + (6b/b)? can not be derived from
the first principles of probability theory.

The rules implemented for real valued error propagation are:
d(a+b) =+/(da)? + (6b)?,
d(a—0b) = +/(da)? + (db)2,
5(ab) = \/(8a)2b? + (3b)2a2 + (8a)2(6b)2.

For complex numbers the above rules are implemented for the real and imaginary parts individually.

4.4. Uncertainties 35

pySecDec Documentation, Release 1.5.2

template<typename T>
class UncorrelatedDeviation

T value
The expectation value.

T uncertainty
The standard deviation.

Example:

#include <iostream>
#include <complex>
#include <secdecutil/uncertainties.hpp>

int main ()
{
secdecutil: :UncorrelatedDeviation<double> r(1.,0.5);
secdecutil: :UncorrelatedDeviation<std::complex<double>> c({2.,3.},{0.6,0.7});

std::cout << "r: " << r << std::endl;

std::cout << "c: " << ¢ << std::endl << std::endl;

std::cout << "r.value: " << r.value << std::endl;
std::cout << "r.uncertainty: " << r.uncertainty << std::endl;
std::cout << "r + c: " << r + ¢ << std::endl;

std::cout << "r % c: " << r % c << std::endl;

std::cout << "r / 3.0: " << r / 3. << std::endl;

// std::cout << "1. / r: " << 1. / r << std::endl; // ERROR
// std::cout << "c / r: " << ¢ / r << std::endl; // ERROR

Compile/Run:

$ c++ —-IS{SECDEC_CONTRIB}/include -std=c++14 example.cpp -0 example -1lm && ./example

Output:

r: 1 +/- 0.5

c: (2,3) +/- (0.6,0.7)

r.value: 1

r.uncertainty: 0.5

r + c: (3,3) +/- (0.781025,0.7)

r x C: (2,3) +/- (1.20416,1.69189)
r / 3.0: 0.333333 +/- 0.166667

36 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

4.5 Integrand Container

A class template for containing integrands. It stores the number of integration variables and the integrand as a
std::function.

This class overloads the arithmetic operators (+, —, %, /) and the call operator (()).

template<typename T, typename ...Args>
class IntegrandContainer

int number_of_integration_variables
The number of integration variables that the integrand depends on.

std::function<7 (Args...) > integrand
The integrand function. The call operator forwards to this function.

Example (add two IntegrandContainer and evaluate one point):

#include <iostream>
#include <secdecutil/integrand_container.hpp>

int main ()

{
using input_t = const double * const;
using return_t = double;

const std::function<return_t (input_t, secdecutil::ResultlInfox)> f1 = [] (input_t
—x, secdecutil::ResultInfox result_info) { return 2xx[0]; };
secdecutil::IntegrandContainer<return_t, input_t> cl(1,f£fl);

const std::function<return_t (input_t, secdecutil::ResultlInfox)> f2 = [] (input_t
—x, secdecutil::ResultInfo* result_info) { return x[0]+x[1]1; };
secdecutil::IntegrandContainer<return_t,input_t> c2(2,£2);

secdecutil::IntegrandContainer<return_t,input_t> c¢3 = cl + c2;
const double point[]{1.0,2.0};

const double parameters[]{};
secdecutil::ResultInfo* result_info;

std::cout << "cl.number of integration_variables: " << cl.number_of_integration_
—variables << std::endl;

std::cout << "c2.number_of_ integration_variables: " << c2.number_of_integration_
—variables << std::endl << std::endl;

std::cout << "c3.number_of_integration_variables: " << c3.number_of_integration_
—variables << std::endl;

std::cout << "c3.integrand(point, parameters, result_info): " << c3.integrand_

—with_parameters (point, parameters, result_info) << std::endl;

Compile/Run:

$ c++ -IS{SECDEC_CONTRIB}/include -std=c++14 example.cpp -0 example -1lm && ./example

Output:

4.5. Integrand Container 37

pySecDec Documentation, Release 1.5.2

cl.number_of_integration_variables: 1
c2.number_of_integration_variables: 2

c3.number_of_integration_variables: 2
c3.integrand (point, parameters, result_info): 4

4.6 Integrator

A base class template from which integrator implementations inherit. It defines the minimal API available for all
integrators.

template<typename return_t, typename input_t, typename container_t = secdecutil::/ntegrandContainer<return_t, in
class Integrator

bool together
(Only available if return_t isa std: : complex type) If t rue after each call of the func-
tion both the real and imaginary parts are passed to the underlying integrator. If false after
each call of the function only the real or imaginary part is passed to the underlying integrator.
For some adaptive integrators considering the real and imaginary part of a complex function
separately can improve the sampling. Default: false.

UncorrelatedDeviation<return_t> integrate (const [IntegrandContainer<return_t, in-

put_t const*const>&)
Integrates the IntegrandContainer and returns the value and uncertainty as an

UncorrelatedDeviation.
An integrator that chooses another integrator based on the dimension of the integrand.

template<typename return_t, typename input_t>
class MultilIntegrator

Integrator<return_t, input_t> &low_dimensional_integrator
Reference to the integrator to be used if the integrand has a lower dimension than
critical_dim.

Integrator<return_t, input_t> &high_dimensional_integrator
Reference to the integrator to be used if the integrand has dimension critical dim or
higher.

intcritical dim
The dimension below which the Jow _dimensional_integrator is used.

4.6.1 CQuad

For one dimensional integrals, we wrap the cquad integrator form the GNU scientifc library (gsl).
CQuad takes the following options:
e epsrel - The desired relative accuracy for the numerical evaluation. Default: 0.01.
* epsabs - The desired absolute accuracy for the numerical evaluation. Default: 1e-7.

* n - The size of the workspace. This value can only be set in the constructor. Changing this attribute of an
instance is not possible. Default: 100.

38 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

* verbose - Whether or not to print status information. Default: false.

* zero_border - The minimal value an integration variable can take. Default: 0. 0. (new in version 1.3)

4.6.2 Qmce

The quasi-monte carlo integrator as described in [PSD18]. Using a quasi-monte integrator to compute sector decom-
posed integrals was pioneered in [LWY+15].

template<typename return_t, ::integrators::U maxdim, template<typename, typename, ::integrators::U> class transform_t, typ
class Qmc : Integrator<return_t, return_t, container_t>, publiec ::integrators::Qmc<return_t, return_t, maxdim, transform_t, fitfun
Derived from secdecutil: :Integrator and : :integrators: :Qmc - the underlying standalone im-
plementation of the Qmc.

The most important fields and template argments of Omc are:

* minn - The minimal number of points in the Qmc lattice. Will be augmented to the next larger available
n.

* minm - The minimal number of random shifts.

* maxeval - The maximal number of integrand evaluations.

e epsrel - The desired relative accuracy for the numerical evaluation.

* epsabs - The desired absolute accuracy for the numerical evaluation.

* maxdim - The highest dimension the Omc instance can be used for.

e transform_t - The periodizing transform to apply prior to integration.

e fitfunction_t - The fit function transform to apply for adaptive integration.

e verbosity - Controls the amount of status messages during integration. Can be 0, 1, 2, or 3.

* devices - A std: :set of devices to run on. —1 denotes the CPU, positive integers refer to GPUs.
Refer to the documentation of the standalone Qmc for the default values and additional information.

An integral transform has to be chosen by setting the template argument t ransform_t. Available transforms are
e.g. Korobov<r0,rl> and Sidi<r0>, please refer to the underlying Qmc implementation for a complete list.
The fit function for adaptive integration can be set by the fitfunction_t, e.g. PolySingular. If not set, the
default of the underlying Qmc implementation is used.

Examples how to use the Qmc on the CPU and on both, CPU and GPU are shown below.

4.6.3 Cuba

Currently we wrap the following Cuba integrators:
* Vegas
* Suave
¢ Divonne
* Cuhre
The Cuba integrators all implement:
* epsrel - The desired relative accuracy for the numerical evaluation. Default: 0.01.

* epsabs - The desired absolute accuracy for the numerical evaluation. Default: 1e-7.

4.6. Integrator 39

pySecDec Documentation, Release 1.5.2

e flags - Sets the Cuba verbosity flags. The £1lags=2 means that the Cuba input parameters and the
result after each iteration are written to the log file of the numerical integration. Default: 0.

* seed - The seed used to generate random numbers for the numerical integration with Cuba. Default: 0.

* mineval - The number of evaluations which should at least be done before the numerical integrator
returns a result. Default: 0.

* maxeval - The maximal number of evaluations to be performed by the numerical integrator. Default:
1000000.

e zero_border - The minimal value an integration variable can take. Default: 0. 0. (new in version 1.3)

The available integrator specific parameters and their default values are:

Vegas Suave Divonne Cuhre
nstart (10000) nnew (1000) keyl (2000) key (0)
nincrease (5000) | nmin (10) key2 (1)
nbatch (500) flatness (25.0) | key3 (1)

maxpass (4)

border (0. 0)
maxchisq (1. 0)
mindeviation (0.15)

For the description of these more specific parameters we refer to the Cuba manual.

4.6.4 Examples

Integrate Real Function with Cuba Vegas

Example:

#include <iostream>

#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>

int main ()

{
using input_t = const double * const;
using return_t = double;

secdecutil: :cuba: :Vegas<return_t> integrator;
integrator.epsrel = le-4;
integrator.maxeval = le7;

secdecutil::IntegrandContainer<return_t, input_t> c(2, [] (input_t x,_,
—»secdecutil::ResultInfo* result_info) { return x[0]*x[1]; });

secdecutil: :UncorrelatedDeviation<return_t> result = integrator.integrate(c);
std::cout << "result: " << result << std::endl;

}

Compile/Run:

$ c++ —-IS{SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++14 example.cpp -0,
—example —-lcuba -1lm && ./example

40 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

Output:

result: 0.250004 +/- 2.43875e-05

Integrate Complex Function with Cuba Vegas

Example:

#include <iostream>

#include <complex>

#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>

int main ()

{
using input_t = const double * const;
using return_t = std::complex<double>;

secdecutil::cuba: :Vegas<return_t> integrator;

const std::function<return_t (input_t, secdecutil::ResultlInfox)> f = [] (input_t x,
— secdecutil::ResultInfox result_info) { return return_t{x[0],x[1]1}; 1};

secdecutil::IntegrandContainer<return_t, input_t> c(2,£f);

integrator.together = false; // integrate real and imaginary part separately,
— (default)
secdecutil::UncorrelatedDeviation<return_t> result_separate = integrator.

—integrate(c);

integrator.together = true; // integrate real and imaginary part simultaneously
secdecutil::UncorrelatedDeviation<return_t> result_together = integrator.
—integrate (c);

std::cout << "result_separate: " << result_separate << std::endl;
std::cout << "result_together: " << result_together << std::endl;
}
Compile/Run:

$ c++ —-IS{SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++14 example.cpp -o_
—example —-lcuba -1lm && ./example

Output:

result_separate: (0.499937,0.499937) +/- (0.00288675,0.00288648)
result_together: (0.499937,0.499937) +/- (0.00288675,0.00288648)

4.6. Integrator 41

pySecDec Documentation, Release 1.5.2

Integrate Real Function with Cuba Vegas or CQuad

Example:

#include <iostre
#include <secdec
#include <secdec
#include <secdec
#include <secdec
#include <secdec

int main ()

{

am>
util/integrand_container.hpp>
util/uncertainties.hpp>
util/integrators/integrator.hpp>
util/integrators/cuba.hpp>
util/integrators/cquad. hpp>

using input_base_t = double;

using input_

t = const input_base_t x const;

using return_t = double;

secdecutil::
vegas.epsrel
vegas.maxeva

secdecutil::
cquad.epsrel
cquad.epsabs

cuba: :Vegas<return_t> vegas;
= le-5;
1 = 1e7;

gsl::CQuad<return_t> cquad;
= 1e-10;
= le-13;

secdecutil::MultiIntegrator<return_t, input_base_t> integrator (cquad,vegas, 2);

secdecutil::IntegrandContainer<return_t, input_t> one_dimensional(l, [] (input_t x,

— secdecutil::ResultInfo* result_info) { return x[0]; });

secdecutil::IntegrandContainer<return_t,input_t> two_dimensional (2, [] (input_t x,

— secdecutil::ResultInfo* result_info)

secdecutil::
—dimensional) ;

secdecutil::
—dimensional) ;

std::cout <<
std::cout <<

UncorrelatedDeviation<return_t> result_1d
// uses cquad
UncorrelatedDeviation<return_t> result_2d
// uses vegas

"result_1d: " << result_1ld << std::endl;
"result_2d: " << result_2d << std::endl;

{ return x[0]x*x[1];

1)
integrator.integrate (one_

integrator.integrate (two_

Compile/Run:

$ c++ —-IS{SECDEC
—example —lcuba

_CONTRIB}/include -L${SECDEC_CONTRIB}/1lib

-1gsl -lgslcblas -1m && ./example

-std=c++14 example.cpp -0,

Output:

result_1d: 0.5 +
result_2d: 0.25

/- 9.58209e-17
+/- 5.28257e-06

42

Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

Set the integral transform of the Qmc

Example:

#include <iostream>

#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/qmc.hpp>

using input_base_t = double;

using input_t = input_base_t const * const;

using return_t = double;

using container_t = secdecutil::IntegrandContainer<return_t, input_t>;
using result_t = secdecutil::UncorrelatedDeviation<return_t>;

const int seed = 12345, maxdim = 4;

int main ()

{

/%

* minimal instantiation

*/
secdecutil::integrators: :Qmc
<

return_t, // the return type of the integrand
maxdim, // the highest dimension this integrator will be used for
::integrators::transforms: :Baker::type // the integral transform
> integrator_baker;
integrator_baker.randomgenerator.seed (seed);

/%

* disable adaptation

*/
secdecutil::integrators: :Qmc
<

return_t, // the return type of the integrand
maxdim, // the highest dimension this integrator will be used for
::integrators: :transforms: :Korobov<4,1>::type, // the integral transform
container_t, // the functor type to be passed to this integrator
::integrators::fitfunctions: :None::type // the fit funtion

> integrator_korobovédxl;

integrator_korobov4dxl.randomgenerator.seed (seed) ;

/ *

* enable adaptation

*/
secdecutil::integrators: :Qmc
<

return_t, // the return type of the integrand

maxdim, // the highest dimension this integrator will be used for

::integrators: :transforms::5idi<3>::type, // the integral transform

container_t, // the functor type to be passed to this integrator

::integrators::fitfunctions::PolySingular::type // the fit funtion
> integrator_sidi3_adaptive;
integrator_sidi3_adaptive.randomgenerator.seed (seed);

// define the integrand as a functor
container_t integrand(

(continues on next page)

4.6. Integrator

43

pySecDec Documentation, Release 1.5.2

(continued from previous page)

4, // dimension
[1 (input_t x, secdecutil::ResultInfo* result_info) {_
—return x[0]*x[1]1*x[2]1*x[3]; } // integrand function
)i

// compute the integral with different settings

result_t result_baker = integrator_baker.integrate (integrand);

result_t result_korobov4dxl = integrator_korobov4dxl.integrate (integrand);
result_t result_sidi3_adaptive = integrator_sidi3_adaptive.integrate (integrand);

// print the results

std::cout << "baker: " << result_baker << std::endl;
std::cout << "Korobov (weights 4, 1): " << result_korobov4xl << std::endl;
std::cout << "Sidi (weight 3, adaptive): " << result_sidi3_adaptive << std::endl;
}
Compile/Run:

c++ —-IS{SECDEC_CONTRIB}/include -pthread -L${SECDEC_CONTRIB}/lib -std=c++14 example.
—cpp -0 example -1lm && ./example

Output:

baker: 0.0625 +/- 7.93855e-08
Korobov (weights 4, 1): 0.0625108 +/- 2.97931e-05
Sidi (weight 3, adaptive): 0.0625 +/- 4.33953e-09

Run the Qmc on GPUs

Example:

#include <iostream>

#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/qmc.hpp>

using input_base_t = double;
using input_t = input_base_t const * const;

using return_t = double;

using container_t = secdecutil::IntegrandContainer<return_t, input_t>;

using result_t = secdecutil::UncorrelatedDeviation<return_t>;

J *
* ‘container_t ' cannot be used on the GPU —--> define a different container type
*/

struct cuda_integrand t

{

const static unsigned number_of_integration_variables = 4;

// integrand function
#ifdef __ CUDACC__
__host__ device_
#endif
return_t operator () (input_t x)

{

(continues on next page)

44 Chapter 4. SecDecUtil

pySecDec Documentation, Release 1.5.2

(continued from previous page)

return x[0]*x[1]*x[2]*x[3];
}i

void process_errors () const{ /x error handling #*/}
} cuda_integrand;

const int seed = 12345, maxdim = 4;

int main ()

{

/%
* Omc capable of sampling on the GPU
*/

secdecutil::integrators: :Qmc

<

return_t, // the return type of the integrand

maxdim, // the highest dimension this integrator will be used for

::integrators: :transforms::Sidi<3>::type, // the integral transform

cuda_integrand_t, // the functor type to be passed to this integrator

::integrators::fitfunctions::PolySingular::type // the fit funtion (optional)
> integrator_sidi3_adaptive_gpu;
integrator_sidi3_adaptive_gpu.randomgenerator.seed (seed);

// compute the integral with different settings
result_t result_sidi3_adaptive_gpu = integrator_sidi3_adaptive_gpu.integrate (cuda_

—integrand) ;

// print the results
std::cout << "Sidi (weight 3, adaptive): " << result_sidi3_adaptive_gpu <<_

—std::endl;
}

Compile/Run:

nvcc -x cu —IS${SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++14 example.cpp,,

-0 example -1gsl -lgslcblas -1lm && ./example # with GPU
c++ —-IS{SECDEC_CONTRIB}/include -pthread -L${SECDEC_CONTRIB}/lib -std=c++14 example.
—cpp -0 example -1gsl -lgslcblas -1m && ./example # without GPU

Output:

Sidi (weight 3, adaptive): 0.0625 +/- 4.33953e-09

4.6. Integrator 45

pySecDec Documentation, Release 1.5.2

46 Chapter 4. SecDecUtil

CHAPTER
FIVE

REFERENCE GUIDE

This section describes all public functions and classes in pySecDec.

5.1 Algebra

Implementation of a simple computer algebra system.
class pySecDec.algebra.ExponentiatedPolynomial (expolist, coeffs, exponent=1I, polysym-

bols='x", copy=True)

Like Polynomial, but with a global exponent. polynomial¢cPorent

Parameters
* expolist —iterable of iterables; The variable’s powers for each term.
* coeffs —iterable; The coefficients of the polynomial.
* exponent — object, optional; The global exponent.

* polysymbols — iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[*“A”’,’B”’]
— polysymbols="x" (default) <-> “A*x0**2 + B*x0*x1”

— polysymbols=[‘x’,y’] <-> “A*x**2 + B*x*y”

* copy — bool; Whether or not to copy the expolist, the coeffs, and the exponent.

Note: If copy is False, it is assumed that the expolist, the coeffs and the exponent have
the correct type.

copy ()
Return a copy of a Polynomial or a subclass.

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

static from_expression (*args, **kwargs)
Alternative constructor. Construct the polynomial from an algebraic expression.

Parameters

pySecDec Documentation, Release 1.5.2

* expression — string or sympy expression; The algebraic representation of the polyno-
mial, e.g. “5*x1¥*2 + x1*x2”

* polysymbols — iterable of strings or sympy symbols; The symbols to be interpreted as
the polynomial variables, e.g. “[‘x1°,x2’]".

refactorize (*parameters)
Returns a product of the greatest factor that could be pulled out and the factorised polynomial.

Parameters parameter — arbitrarily many integers;

simplify ()
Apply the identity <something>**0 = 1 or <something>**1 = <something> or 1**<something> = 1 if
possible, otherwise call the simplify method of the base class. Convert exponent to symbol if possible.

pySecDec.algebra.Expression (expression, polysymbols, follow_functions=False)
Convert a sympy expression to an expression in terms of this module.

Parameters
* expression - string or sympy expression; The expression to be converted

* polysymbols - iterable of strings or sympy symbols; The symbols to be stored as
expolists (see Polynomial) where possible.

* follow_functions — bool, optional (default = False); If true, return the converted
expression and a list of Funct ion that occur in the expression.

class pySecDec.algebra.Function (symbol, *arguments, **kwargs)
Symbolic function that can take care of parameter transformations. It keeps track of all taken derivatives: When
derive () is called, save the multiindex of the taken derivative.

The derivative multiindices are the keys in the dictionary self.derivative_tracks. The values are lists
with two elements: Its first element is the index to derive the derivative indicated by the multiindex in the second
element by, in order to abtain the derivative indicated by the key:

>>> from pySecDec.algebra import Polynomial, Function

>>> x = Polynomial.from_expression('x', ['x','yv"'])

>>> y = Polynomial.from_expression('y', ['x','v"'])

>>> po]_y = X**2*y + y**z

>>> func = Function('f', x, vy)

>>> ddfuncd0dl = func.derive (0) .derive (1)

>>> func

Function(f(+ (1)*x, + (1)=y), derivative_tracks = {(1, 0): [0, (0, O)], (1, 1):_

—[1, (1, 0)1})
>>> func.derivative_tracks

{(, 0): [0, (O, O)], (1, 1): [1, (1, 0)]}

>>> func.compute_derivatives (poly)

{(1, 0): + (2)*xxy, (1, 1): + (2)=*x}
Parameters

* symbol - string; The symbol to be used to represent the Function.
* arguments — arbitrarily many _Expression; The arguments of the Function.
* copy - bool; Whether or not to copy the arguments.

compute_derivatives (expression=None)

Compute all derivatives of expression that are mentioned in self.derivative_tracks. The
purpose of this function is to avoid computing the same derivatives multiple times.

48 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Parameters expression—_Expression, optional; The expression to compute the deriva-
tives of. If not provided, the derivatives are shown as in terms of the function’s derivatives
dfd<index>.

copy ()
Return a copy of a Function.

derive (index)
Generate the derivative by the parameter indexed index. The derivative of a function with symbol £ by
some index is denoted as dfd<index>.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index - integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify ()
Simplify the arguments.

class pySecDec.algebra.Log (arg, copy=True)
The (natural) logarithm to base e (2.718281828459..). Store the expressions 1og (arg).

Parameters
* arg - _Expression; The argument of the logarithm.

* copy — bool; Whether or not to copy the arg.

copy ()
Return a copy of a Log.

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

5.1. Algebra 49

pySecDec Documentation, Release 1.5.2

simplify ()
Apply log (1) = 0.

class pySecDec.algebra.LogOfPolynomial (expolist, coeffs, polysymbols='x', copy=True)
The natural logarithm of a Polynomial.

Parameters
* expolist —iterable of iterables; The variable’s powers for each term.
* coeffs —iterable; The coefficients of the polynomial.
* exponent — object, optional; The global exponent.

* polysymbols — iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[*“A”’,’B”’]
— polysymbols="x" (default) <-> “A*x0**2 + B*x0*x1”
— polysymbols=[‘x’,y’] <-> “A*x**2 4+ B*x*y”

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

static from_expression (expression, polysymbols)
Alternative constructor. Construct the LogOfPolynomial from an algebraic expression.

Parameters

* expression — string or sympy expression; The algebraic representation of the polyno-
mial, e.g. “5*x1¥*2 + x1*x2”

* polysymbols — iterable of strings or sympy symbols; The symbols to be interpreted as
the polynomial variables, e.g. “[‘x1°,x2’]".

simplify ()
Apply the identity 1og (1) = 0, otherwise call the simplify method of the base class.

class pySecDec.algebra.Polynomial (expolist, coeffs, polysymbols='x', copy=True)
Container class for polynomials. Store a polynomial as list of lists counting the powers of the variables. For
example the polynomial “x1**2 + x1*x2” is stored as [[2,0],[1,1]].

Coefficients are stored in a separate list of strings, e.g. “A*x0**2 + B*x0*x1” <-> [[2,0],[1,1]] and [“A”,"B”].
Parameters

* expolist —iterable of iterables; The variable’s powers for each term.

Hint: Negative powers are allowed.

* coeffs — 1d array-like with numerical or sympy-symbolic (see http://www.sympy.org/)
content, e.g. [x,1,2] where x is a sympy symbol; The coefficients of the polynomial.

* polysymbols — iterable or string, optional; The symbols to be used for the polynomial
variables when converted to string. If a string is passed, the variables will be consecutively
numbered.

For example: expolist=[[2,0],[1,1]] coeffs=[*“A”’,’B”’]

50 Chapter 5. Reference Guide

http://www.sympy.org/

pySecDec Documentation, Release 1.5.2

— polysymbols="x" (default) <-> “A*x0**2 + B*x0*x1”
— polysymbols=[‘X’,y’] <-> “A*x**2 4+ B*x*y”

* copy — bool; Whether or not to copy the expolist and the coeffs.

Note: If copyis False, itis assumed that the expolist and the coeffs have the correct type.

becomes_zero_for (zero_params)
Return True if the polynomial becomes zero if the parameters passed in zero_params are set to zero.
Otherwise, return False.

Parameters zero_params —iterable of integers; The indices of the parameters to be checked.

copy ()
Return a copy of a Polynomial or a subclass.

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

static from_expression (expression, polysymbols)
Alternative constructor. Construct the polynomial from an algebraic expression.

Parameters

* expression — string or sympy expression; The algebraic representation of the polyno-
mial, e.g. “5*x1**2 + x1*x2”

* polysymbols — iterable of strings or sympy symbols; The symbols to be interpreted as
the polynomial variables, e.g. “[‘x1°,x2°]".

has_constant_term (indices=None)
Return True if the polynomial can be written as:

const + ...

Otherwise, return False.

Parameters indices - list of integers or None; The indices of the polysymbols to consider. If
None (default) all indices are taken into account.

refactorize (*parameters)
Returns a product of the greatest factor that could be pulled out and the factorised polynomial.

Parameters parameter — arbitrarily many integers;

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

5.1. Algebra 51

pySecDec Documentation, Release 1.5.2

simplify (deep=True)
Combine terms that have the same exponents of the variables.

Parameters deep — bool; If True (default) call the simplify method of the coefficients if they
are of type _Expression.

class pySecDec.algebra.Pow (base, exponent, copy=True)
Exponential. Store two expressions A and B to be interpreted as the exponential A+ *B.

Parameters
* base - _Expression; The base A of the exponential.
* exponent — _Expression; The exponent B.
* copy — bool; Whether or not to copy base and exponent.

copy ()
Return a copy of a Pow.

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-

derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove —bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify ()
Apply the identity <something>**(0 = 1 or <something>**1 = <something> or 1**<something> = 1 if
possible. Convert to ExponentiatedPolynomial or Polynomial if possible.

class pySecDec.algebra.Product (*factors, **kwargs)
Product of polynomials. Store one or polynomials p; to be interpreted as product [[, p;.

Parameters
* factors - arbitrarily many instances of Polynomial; The factors p;.
* copy — bool; Whether or not to copy the factors.
p; can be accessed with self.factors[i].

Example:

p = Product (p0, pl)
pO0 = p.factors[0]
pl = p.factors[1]

copy ()
Return a copy of a Product.

52 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

derive (index)
Generate the derivative by the parameter indexed index. Return an instance of the optimized
ProductRule.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify ()
If one or more of self.factors isa Product, replace it by its factors. If only one factor is present,
return that factor. Remove factors of one and zero.

class pySecDec.algebra.ProductRule (*expressions, **kwargs)
Store an expression of the form

Sellll () e

The main reason for introducing this class is a speedup when calculating derivatives. In particular, this class
implements simplifications such that the number of terms grows less than exponentially (scaling of the naive
implementation of the product rule) with the number of derivatives.

Parameters expressions — arbitrarily many expressions; The expressions f;.

copy ()
Return a copy of a ProductRule.

derive (index)
Generate the derivative by the parameter indexed index. Note that this class is particularly designed to hold
derivatives of a product.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-
derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

5.1. Algebra 53

pySecDec Documentation, Release 1.5.2

simplify ()
Combine terms that have the same derivatives of the expressions.

to_sum()
Convert the ProductRule to Sum

class pySecDec.algebra.Sum (*summands, **kwargs)
Sum of polynomials. Store one or polynomials p; to be interpreted as product), p;.

Parameters
* summands - arbitrarily many instances of Polynomial; The summands p;.
* copy — bool; Whether or not to copy the summands.
p; can be accessed with self.summands [1i].

Example:

p = Sum(p0, pl)

PO = p.summands[0]
pl = p.summands[1]
copy ()

Return a copy of a Sum.

derive (index)
Generate the derivative by the parameter indexed index.

Parameters index — integer; The index of the paramater to derive by.

replace (index, value, remove="False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the un-

derlying Polynomial are set to zero. The coefficients are modified according to value and the powers
indicated in the expolist.

Parameters
* expression - _Expression; The expression to replace the variable.
* index — integer; The index of the variable to be replaced.
* value — number or sympy expression; The value to insert for the chosen variable.

* remove — bool; Whether or not to remove the replaced parameter from the parameters
in the expression.

simplify ()
If one or more of self.summands is a Sum, replace it by its summands. If only one summand is present,
return that summand. Remove zero from sums.

pySecDec.algebra.refactorize (polyprod, *parameters)
Ina algebra.Product of the form <monomial> * <polynomial>, check if a parameter in <polynomial>
can be shifted to the <monomial>. If possible, modify polyprod accordingly.

Parameters

* polyprod — algebra.Product of the form <monomial> * <polynomial>"; The prod-
uct to refactorize.

* parameter — integer, optional; Check only the parameter with this index. If not provided,
all parameters are checked.

54 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

5.2 Loop Integral

This module defines routines to Feynman parametrize a loop integral and build a c++ package that numerically inte-
grates over the sector decomposed integrand.

5.2.1 Feynman Parametrization

Routines to Feynman parametrize a loop integral.

class pySecDec.loop_integral.LoopIntegral (*args, **kwargs)
Container class for loop integrals. The main purpose of this class is to convert a loop integral from the momen-
tum representation to the Feynman parameter representation.

It is possible to provide either the graph of the loop integrals as adjacency list, or the propagators.

The Feynman parametrized integral is a product of the following expressions that are accessible as member
properties:

e self.Gamma_factor
e self.exponentiated_U
e self.exponentiated_F
e self.numerator
* self.measure,
where self is an instance of either LoopIntegral FromGraphor LoopIntegral FromPropagators.

When inverse propagators or nonnumerical propagator powers are present (see powerlist), some Feyn-
man_parameters drop out of the integral. The variables to integrate over can be accessed as self.
integration_variables.

While self.numerator describes the numerator polynomial generated by tensor numerators or inverse prop-
agators, self .measure contains the monomial associated with the integration measure in the case of propa-
gator powers # 1. The Gamma functions in the denominator belonging to the measure, however, are multiplied
to the overall Gamma factor given by self.Gamma_factor.

Changed in version 1.2.2: The overall sign (—1)"" is included in sel1f.Gamma_factor.

See also:

* input as graph: LoopIntegralFromGraph

e input as list of propagators: LoopIntegralFromPropagators

class pySecDec.loop_integral.LoopIntegralFromGraph (internal_lines, external_lines,
replacement_rules=[], Feyn-
man_parameters="x', regula-
tors=None, regulator=None,
dimensionality="4-2*eps', pow-
erlist=[])

Construct the Feynman parametrization of a loop integral from the graph using the cut construction method.

Example:

5.2. Loop Integral 55

pySecDec Documentation, Release 1.5.2

>>> from pySecDec.loop_integral import =
>>> internal_lines = [['0',[1,2]], ['m',[2,31], ['m',[3,111]
>>> external_lines = [['pl',1],['p2',2],["'-pl2",3]]
>>> 1i = LoopIntegralFromGraph (internal_lines, external_lines)
>>> 1i.exponentiated_U
(+ (1)*x0 + (1)*x1 + (1)*x2)+*x(2xeps - 1)
>>> 1i.exponentiated_F
(+ (mx*2) *X2%%2 + (2xmx*x2 — PLl2+xx2) *xX1*x2 + (mxx2)*x1**2 + (mx*x2 — plxx2)*x0%x2 |
ot (mx*2 — pP2xx2) *x0%x1) *xx (-eps — 1)
Parameters

* internal_lines - iterable of internal line specification, consisting of string or sympy
expression for mass and a pair of strings or numbers for the vertices, e.g. [['m', [1,
211, ('o', [2,1111].

* external_lines - iterable of external line specification, consisting of string or sympy
expression for external momentum and a strings or number for the vertex, e.g. [['pl"',
11, ['p2', 2]1].

* replacement_rules — iterable of iterables with two strings or sympy expressions, op-
tional; Symbolic replacements to be made for the external momenta, e.g. definition of Man-
delstam variables. Example: [('plxp2', 's'), ('plx%2', 0)] where pl and
p2 are external momenta. It is also possible to specify vector replacements, for example
[('pd', '—(pl+p2+p3)")].

* Feynman_parameters - iterable or string, optional; The symbols to be used for the
Feynman parameters. If a string is passed, the Feynman parameter variables will be consec-
utively numbered starting from zero.

* regulators — list of strings or sympy symbol, optional; The symbols to be used for the
regulators (typically € or ep)

Note: If you change the dimensional regulator symbol, you have to adapt the dimensionality
accordingly.

* regulator —astring or a sympy symbol, optional; Deprecated; same as setting regulators
to a list of a single element.

* dimensionality - string or sympy expression, optional; The dimensionality; typically
4 — 2¢, which is the default value.

* powerlist —iterable, optional; The powers of the propergators, possibly dependent on the
regulators. In case of negative powers, the numerator is constructed by taking derivatives
with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref.
[BHJ+15]. If negative powers are combined with a tensor numerator, the derivatives act on
the Feynman-parametrized tensor numerator as well, which leads to a consistent result.

56

Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

class pySecDec.loop_integral.LoopIntegralFromPropagators (propagators,
loop_momenta, ex-
ternal_momenta=/[],
Lorentz_indices=[],

numerator=1, met-
ric_tensor='g', replace-
ment_rules=[], Feyn-

man_parameters="x',
regulators=None,
regulator=None,
dimensionality="4-
2*eps’', powerlist=[])
Construct the Feynman parametrization of a loop integral from the algebraic momentum representation.
See also:
[Hei08], [GKR+11]

Example:

>>> from pySecDec.loop_integral import =

>>> propagators = ['kxx2', "(k — p)*xx2"]

>>> loop_momenta = ['k']

>>> 11 = LoopIntegralFromPropagators (propagators, loop_momenta)
>>> 1li.exponentiated_U

(+ (1)*x0 + (1)*x1l)*x*(2%eps — 2)

>>> 1i.exponentiated_ F

(+ (—p**2)*x0xx1) ** (—eps)

The st (U) and 2nd (F) Symanzik polynomials and their exponents can also be accessed independently:

>>> 1i.U

+ (1) *x0 + (1)#*x1
>>> 1i.F

+ (—p**2) *x0xx1
>>>
>>> 1i.exponent_U
2xeps — 2
>>> 1i.exponent_F
-eps

Parameters

* propagators - iterable of strings or sympy expressions; The propagators, e.g.
["klxx2', "(kl-k2)#*%2 — ml*x*x2"'].

* loop_momenta - iterable of strings or sympy expressions; The loop momenta, e.g.
['k1l','k2"].

* external momenta - iterable of strings or sympy expressions, optional; The external
momenta, e.g. ['pl', "'p2"']. Specifying the external_momenta is only required when a
numerator is to be constructed.

See also:
parameter numerator

* Lorentz_indices - iterable of strings or sympy expressions, optional; Symbols to be
used as Lorentz indices in the numerator.

5.2. Loop Integral 57

pySecDec Documentation, Release 1.5.2

See also:
parameter numerator

* numerator — string or sympy expression, optional; The numerator of the loop integral.
Scalar products must be passed in index notation e.g. k1 (mu) k2 (mu). The numerator
must be a sum of products of exclusively:

— numbers
— scalar products (e.g. pl (mu) xk1 (mu) *pl (nu) k2 (nu))

— symbols (e.g. s, eps)

Examples:
— pl (mu) xkl (mu) *pl (nu) k2 (nu) + 4xsxepsxkl (mu) *kl (mu)
— pl(mu)* (kl(mu) + k2 (mu))*pl(nu)*k2 (nu)

— pl (mu) xk1l (mu)

Note: In order to use the resulting Looplntegral as an argument to the
function pySecDec.loop_integral.loop_package (), the resulting Feynman
parametrized self.numerator must be expressible as a pySecDec.algebra.
Polynomial such that all coefficients are purely numeric. In addition, all scalar prod-
ucts of the external momenta must be expressed in terms of Mandelstam variables using the
replacement_rules.

Warning: All Lorentz indices (including the contracted ones and also including
the numbers that have been used) must be explicitly defined using the parameter
Lorentz_indices.

Hint: It is possible to wuse numbers as indices, for example
pl (mu) *p2 (mu) xk1 (nu) k2 (nu) = pl(1l)*p2(1)=*xkl(2)*k2(2).

Hint: The numerator may have uncontracted indices, e.g. k1 (mu) k2 (nu). If in-
dices are left open, however, the Looplntegral cannot be used with the package generator
pySecDec.loop_integral.loop_package ().

* metric_tensor - string or sympy symbol, optional; The symbol to be used for the
(Minkowski) metric tensor g¥.

* replacement_rules — iterable of iterables with two strings or sympy expressions, op-
tional; Symbolic replacements to be made for the external momenta, e.g. definition of Man-
delstam variables. Example: [('plxp2', 's'), ('plxx2', 0)] where pl and
p2 are external momenta. It is also possible to specify vector replacements, for example
[('p4', '—(pl+p2+p3)")].

* Feynman_parameters — iterable or string, optional; The symbols to be used for the
Feynman parameters. If a string is passed, the Feynman parameter variables will be consec-
utively numbered starting from zero.

58 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

* regulators — list of strings or sympy symbol, optional; The symbols to be used for the
regulators (typically € or ep)

Note: If you change the dimensional regulator symbol, you have to adapt the dimensionality
accordingly.

* regulator —astring or a sympy symbol, optional; Deprecated; same as setting regulators
to a list of a single element.

* dimensionality — string or sympy expression, optional; The dimensionality; typically
4 — 2¢, which is the default value.

* powerlist —iterable, optional; The powers of the propergators, possibly dependent on the
regulators. In case of negative powers, the numerator is constructed by taking derivatives
with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref.
[BHJ+15]. If negative powers are combined with a tensor numerator, the derivatives act on
the Feynman-parametrized tensor numerator as well, which leads to a consistent result.

5.2.2 Loop Package

This module contains the function that generates a c++ package.

pySecDec.loop_integral.loop_package (name, loop_integral, requested_orders=None, re-
quested_order=None, real_parameters=[], com-
plex_parameters=[], contour_deformation=True,
additional_prefactor=1, Sform_optimization_level=2,
Sform_work_space="50M, form_memory_use=None,
form_threads=2, decomposition_method="iterative',
normaliz_executable="normaliz’, en-
force_complex=False, split=False, ibp_power_goal=-
1, use_iterative_sort=True, use_light_Pak=True,
use_dreadnaut=False, use_Pak=True, processes=None,
pylink_gmec_transforms=["korobov3x3'], pack-

age_generator=<function make_package>)
Decompose, subtract and expand a Feynman parametrized loop integral. Return it as c++ package.

See also:
This function is a wrapper around pySecDec.make_package () (default).
See also:

The generated library is described in Generated C++ Libraries.

Parameters
* name - string; The name of the c++ namespace and the output directory.

* loop_integral — pySecDec. loop_integral.LoopIntegral; The loop inte-
gral to be computed.

* requested_orders — iterable of integers; Compute the expansion in the regulators to
these orders.

* requested_order - integer; Deprecated; same as requested_orders set to a list of one
item.

5.2. Loop Integral 59

pySecDec Documentation, Release 1.5.2

* real_parameters — iterable of strings or sympy symbols, optional; Parameters to be
interpreted as real numbers, e.g. Mandelstam invariants and masses.

complex parameters — iterable of strings or sympy symbols, optional; Parameters to
be interpreted as complex numbers. To use the complex mass scheme, define the masses as
complex parameters.

contour_deformation — bool, optional; Whether or not to produce code for contour
deformation. Default: True.

* additional_ prefactor - string or sympy expression, optional; An additional factor
to be multiplied to the loop integral. It may depend on the regulators, the real_parameters,
and the complex_parameters.

form_optimization_level - integer out of the interval [0,4], optional; The opti-
mization level to be used in FORM. Default: 2.

* form work_space - string, optional; The FORM WorkSpace. Default: '50M"'.

Setting this to smaller values will reduce FORM memory usage (without affecting perfor-
mance), but each problem has some minimum value below which FORM will refuse to
work: it will fail with error message indicating that larger WorkSpace is needed, at which
point WorkSpace will be adjusted and FORM will be re-run.

* form memory_use - string, optional; The target FORM memory usage. When specified,
form.set parameters will be adjusted so that FORM uses at most approximately this much
resident memory.

The minimum is approximately to 600M + 350M per worker thread if form_work_space
is left at ' 50M". if form_work_space is increased to ' 500M "', then the minimum is 2.5G +
2.5G per worker thread. Default: None, meaning use the default FORM values.

form_threads - integer, optional; Number of threads (T)FORM will use. Default: 2.

decomposition_method - string, optional; The strategy for decomposing the polyno-
mials. The following strategies are available:

— ’iterative’ (default)
— ’geometric’

— ’geometric_ku’

Note: For ‘geometric’ and ‘geometric_ku’, the third-party program “normaliz” is needed.
See The Geomethod and Normaliz.

* normaliz_executable - string, optional; The command to run normaliz. normaliz is
only required if decomposition_method is set to ‘geometric’ or ‘geometric_ku’. Default:
‘normaliz’

enforce_complex — bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if contour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if 1og (<negative real>) occursinone of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

60 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

* split — bool, optional; Whether or not to split the integration domain in order to map
singularities from 1 to 0. Set this option to True if you have singularties when one or more
integration variables are one. Default: False

* ibp_power_goal — number or iterable of number, optional; The power_goal that is for-
warded to integrate by parts().

This option controls how the subtraction terms are generated. Setting it to —numpy.inf
disables integrate by parts (), while 0 disables integrate _pole part ().

See also:

To generate the subtraction terms, this function first calls integrate_ by parts()
for each integration variable with the give ibp_power_goal. Then
integrate _pole part () is called.

Default: -1

* use_ iterative_ sort — bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with iterative_sort ()
to find sector symmetries. Default: True

* use_light_Pak - bool; Whether or not to use
squash_symmetry_redundant_sectors_sort () with l1ight_Pak_sort ()
to find sector symmetries. Default: True

* use_dreadnaut - bool or string, optional; Whether or not to use
squash_symmetry_ redundant_sectors_dreadnaut () to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
SSECDEC_CONTRIB is not set, dreadnaut. Default: False

* use_Pak —bool; Whether or not touse squash_symmetry redundant_sectors_sort ()
with Pak_sort () to find sector symmetries. Default: True

* processes — integer or None, optional; The maximal number of processes to be used.
If None, the number of CPUs multiprocessing.cpu_count () is used. New in
version 1.3. Default: None

* pylink_gmc_transforms - list or None, optional; Required gmc integral transforms,
options are:

— korobov<i>x<ij>forl<=1ij<=6

— korobov<i> for 1 <=i<=6 (same as korobov<i>x<i>)
— sidi<i>forl<=i<=6

New in version 1.5. Default: ['korobov3x3"']

* package_generator - function; The generator function for the integral, either
pySecDec.make_package () or pySecDec.code_writer.make package ().

Default: pySecDec.make _package ().

5.2. Loop Integral 61

pySecDec Documentation, Release 1.5.2

5.2.3 Drawing Feynman Diagrams

Use the following function to draw Feynman diagrams.

pySecDec.loop_integral.draw.plot_diagram (internal_lines, external_lines, filename, pow-
erlist=None, neato='neato', extension="pdf,

Gstart=0)
Draw a Feynman diagram using Graphviz (neato).

Thanks to Viktor Papara <papara@mpp.mpg.de> for his major contributions to this function.

Note: This function requires the command line tool neato. See also Drawing Feynman Diagrams with neato.

Warning: The target is overwritten without prompt if it exists already.

Parameters

* internal_lines - list; Adjacency list of internal lines, e.g. [['m', ['a',4]1],
(['m', [4,5]], ['m',['a",5]],10,12,21],1(0,[4,1]11,100,([2,5]1]1

* external_lines - list; Adjacency list of external lines, e.g. [[‘p1°,1],[‘p2’,2],[‘p3°,a’]]

* filename - string; The name of the output file. The generated file gets this name plus the
file extension.

* powerlist - list, optional; The powers of the propagators defined by the internal_lines.
* neato - string, default: “neato”’; The shell command to call “neato”.
* extension - string, default: “pdf”’; The file extension. This also defines the output format.

* Gstart — nonnegative int; The is value is passed to “neato” with the “-Gstart” option. Try
changing this value if the visualization looks bad.

5.2.4 Loop Regions

Applies the expansion by regions method to a loop integral.

pySecDec.loop_integral.loop_regions (name, loop_integral, smallness_parameter,
expansion_by_regions_order=0, con-
tour_deformation=True, additional_prefactor=1,

form_optimization_level=2, form_work_space='500M',
add_monomial_regulator_power=None,

decomposition_method=iterative', nor-
maliz_executable="normaliz', enforce_complex=False,
split=False, ibp_power_goal=- 1,
use_iterative_sort=True, use_light_Pak=True,

use_dreadnaut=False, use_Pak=True, processes=None)
Apply expansion by regions method to the loop integral using the function.

See also:
This function is a wrapper around pySecDec.make_regions ().
See also:

The generated library is described in Generated C++ Libraries.

62 Chapter 5. Reference Guide

mailto:papara@mpp.mpg.de

pySecDec Documentation, Release 1.5.2

Parameters

name - string; The name of the c++ namespace and the output directory.

loop_integral — pySecDec. loop_integral; The loop integral to which the ex-
pansion by regions method is applied.

smallness_parameter —string or sympy symbol; The symbol of the variable in which
the expression is expanded.

expansion_by regions_order - integer; The order up to which the expression is
expanded in the smallness_parameter. Default: 0

contour_deformation - bool, optional; Whether or not to produce code for contour
deformation. Default: True.

additional_prefactor — string or sympy expression, optional; An additional factor
to be multiplied to the loop integral. It may depend on the regulators, the real_parameters,
and the complex_parameters.

form_optimization_level - integer out of the interval [0,4], optional; The opti-
mization level to be used in FORM. Default: 2.

form_work_space - string, optional; The FORM WorkSpace. Default: '50M".

Setting this to smaller values will reduce FORM memory usage (without affecting perfor-
mance), but each problem has some minimum value below which FORM will refuse to
work: it will fail with error message indicating that larger WorkSpace is needed, at which
point WorkSpace will be adjusted and FORM will be re-run.

add _monomial_ regulator_ power —string or sympy symbol; Name of the regulator,
using which monomial factors of the form $x_i**(n/p_i)$ are added, to regulate the integrals
arising from the expansion by regions.

decomposition_method - string, optional; The strategy for decomposing the polyno-
mials. The following strategies are available:

— ’iterative’ (default)
— ’geometric’

— ’geometric_ku’

Note: For ‘geometric’ and ‘geometric_ku’, the third-party program “normaliz” is needed.
See The Geomethod and Normaliz.

normaliz_executable - string, optional; The command to run normaliz. normaliz is
only required if decomposition_method is set to ‘geometric’ or ‘geometric_ku’. Default:
‘normaliz’

enforce_complex — bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if contour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if 1og (<negative real>) occursinone of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

split — bool, optional; Whether or not to split the integration domain in order to map
singularities from 1 to 0. Set this option to True if you have singularties when one or more
integration variables are one. Default: False

5.2. Loop Integral

63

pySecDec Documentation, Release 1.5.2

* ibp_power_goal — number or iterable of number, optional; The power_goal that is for-
warded to integrate by parts ().

This option controls how the subtraction terms are generated. Setting it to —numpy.inf
disables integrate by _parts (), while 0 disables integrate_pole_part ().

See also:

To generate the subtraction terms, this function first calls integrate by parts ()
for each integration variable with the give ibp_power_goal. Then
integrate pole part () is called.

Default: -1

e use_iterative_sort — bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with iterative_sort ()
to find sector symmetries. Default: True

* use_light_Pak — bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with l1ight_Pak_sort ()
to find sector symmetries. Default: True

* use_dreadnaut - bool or string, optional; Whether or not to use
squash_symmetry_ redundant_sectors_dreadnaut () to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
SSECDEC_CONTRIB is not set, dreadnaut. Default: False

* use_Pak —bool; Whether or not touse squash_symmetry redundant_sectors_sort ()
with Pak_sort () to find sector symmetries. Default: True

* processes — integer or None, optional; The maximal number of processes to be used.
If None, the number of CPUs multiprocessing.cpu_count () is used. New in
version 1.3. Default: None

5.3 Polytope

The polytope class as required by pySecDec.make_regions and pySecDec.decomposition.
geometric.

class pySecDec.polytope.Polytope (vertices=None, facets=None)
Representation of a polytope defined by either its vertices or its facets. Call
complete_representation () to translate from one to the other representation.

Parameters

* vertices - two dimensional array; The polytope in vertex representation. Each row is
interpreted as one vertex.

» facets —two dimensional array; The polytope in facet representation. Each row represents
one facet F'. A row in facets is interpreted as one normal vector ny with additionally the
constant ar in the last column. The points v of the polytope obey

ﬂ ((np,v)+ap)>0

F

64 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

complete_representation (normaliz="normaliz', workdir="normaliz_tmp', keep_workdir=False)
Transform the vertex representation of a polytope to the facet representation or the other way round. Re-
move surplus entries in self.facets or self.vertices.

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and
Normaliz for installation and a list of tested versions.

Parameters
* normaliz - string; The shell command to run normaliz.

» workdir — string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified direc-
tory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

* keep_workdir — bool; Whether or not to delete the workdir after execution.

vertex_incidence_lists ()
Return for each vertex the list of facets it lies in (as dictonary). The keys of the output dictonary are the
vertices while the values are the indices of the facets in self. facets.

pySecDec.polytope.convex_hull (*polynomials)
Calculate the convex hull of the Minkowski sum of all polynomials in the input. The algorithm sets all coeffi-
cients to one first and then only keeps terms of the polynomial product that have coefficient 1. Return the list of
these entries in the expolist of the product of all input polynomials.

Parameters polynomials — abritrarily many instances of Polynomial where all of these have
an equal number of variables; The polynomials to calculate the convex hull for.

pySecDec.polytope.triangulate (cone, normaliz="normaliz’, workdir="normaliz_tmp’,

keep_workdir=False, switch_representation=False)
Split a cone into simplicial cones; i.e. cones defined by exactly D rays where D is the dimensionality.

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz
for installation and a list of tested versions.

Parameters
* cone - two dimensional array; The defining rays of the cone.
* normaliz - string; The shell command to run normaliz.

* workdir — string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

* keep_workdir — bool; Whether or not to delete the workdir after execution.

* switch_representation - bool; Whether or not to switch between facet and ver-
tex/ray representation.

5.3. Polytope 65

pySecDec Documentation, Release 1.5.2

5.4 Decomposition

The core of sector decomposition. This module implements the actual decomposition routines.

5.4.1 Common

This module collects routines that are used by multiple decompition modules.

class pySecDec.decomposition.Sector (cast, other=[], Jacobian=None)

Container class for sectors that arise during the sector decomposition.
Parameters

* cast —iterable of algebra.Product orof algebra.Polynomial; The polynomi-
als to be cast to the form <monomial> * (const + ...)

* other —iterable of algebra.Polynomial, optional; All variable transformations are
applied to these polynomials but it is not attempted to achieve the form <monomial> *
(const + ...)

* Jacobian — algebra.Polynomial with one term, optional; The Jacobian determi-
nant of this sector. If not provided, the according unit monomial (1*x0"0*x170...) is
assumed.

pySecDec.decomposition.squash_symmetry redundant_sectors_sort (sectors,

sort_function,
indices=None)
Reduce a list of sectors by squashing duplicates with equal integral.
If two sectors only differ by a permutation of the polysymbols (to be interpreted as integration variables over
some inteval), then the two sectors integrate to the same value. Thus we can drop one of them and count the
other twice. The multiple counting of a sector is accounted for by increasing the coefficient of the Jacobian by
one.

Equivalence up to permutation is established by applying the sort_function to each sector, this brings them into
a canonical form. Sectors with identical canonical forms differ only by a permutation.

Note: whether all symmetries are found depends on the choice of sort_function. The sort function
pySecDec.matrix_sort.Pak_sort () should find all symmetries whilst the sort functions pySecDec.
matrix_sort.iterative sort () and pySecDec.matrix sort.light_Pak sort () are
faster but do not identify all symmetries.

See also: squash_symmetry_ redundant_sectors_dreadnaut ()

Example:

>>> from pySecDec.algebra import Polynomial

>>> from pySecDec.decomposition import Sector

>>> from pySecDec.decomposition import squash_symmetry_redundant_sectors_sort
>>> from pySecDec.matrix sort import Pak_sort

>>>

>>> poly = Polynomial ([(0,1), (1,0)], ['a','D"'])

>>> swap = Polynomial ([(1,0),(0,1)], ['a','b'])

>>> Jacobian_poly = Polynomial ([(1,0)1, [3]) # three
>>> Jacobian_swap = Polynomial ([(0,1)], [5]) # five

>>> sectors = (
Sector ([polyl,Jacobian=Jacobian_poly),
Sector ([swap], Jacobian=Jacobian_swap)

(continues on next page)

66

Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

(continued from previous page)

>>>

>>> reduced_sectors = squash_symmetry_redundant_sectors_sort (sectors,
C. Pak_sort)

>>> len (reduced_sectors) # symmetry x0 <--> xI

1

>>> # The Jacobians are added together to account
>>> # for the double counting of the sector.

>>> reduced_sectors[0].Jacobian

+ (8) *x0

Parameters
e sectors —iterable of Sector; the sectors to be reduced.

e sort_function — pySecDec.matrix_sort.iterative sort (),
pySecDec.matrix_sort.light_Pak_sort (), or pySecDec.matrix_sort.
Pak_sort (); The function to be used for finding a canonical form of the sectors.

* indices - iterable of integers, optional; The indices of the variables to consider. If not
provided, all indices are taken into account.

pySecDec.decomposition.squash_symmetry_ redundant_sectors_dreadnaut (seciors,
in-
dices=None,
dread-
naut="dreadnaut’,
workdir="dreadnaut_tmp',

keep_workdir=False)
Reduce a list of sectors by squashing duplicates with equal integral.

Each Sector is converted to a Polynomial which is represented as a graph following the example of
[MP+14] (v2.6 Figure 7, Isotopy of matrices).

We first multiply each polynomial in the sector by a unique tag then sum the polynomials of the sector, this
converts a sector to a polynomial. Next, we convert the expolist of the resulting polynomial to a graph where
each unique exponent in the expolist is considered to be a different symbol. Each unique coefficient in the
polynomial’s coeffs is assigned a vertex and connected to the row vertex of any term it multiplies. The external
program dreadnaut is then used to bring the graph into a canonical form and provide a hash. Sectors with
equivalent hashes may be identical, their canonical graphs are compared and if they are identical the sectors are
combined.

Note: This function calls the command line executable of dreadnaut [MP+14]. It has been tested with dread-
naut version nauty26r7.

See also: squash_symmetry redundant_sectors_sort ()
Parameters
* sectors —iterable of Sector; the sectors to be reduced.

* indices - iterable of integers, optional; The indices of the variables to consider. If not
provided, all indices are taken into account.

* dreadnaut - string; The shell command to run dreadnaut.

5.4. Decomposition 67

pySecDec Documentation, Release 1.5.2

* workdir — string; The directory for the communication with dreadnaut. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with dreadnaut is done via files.

* keep_workdir — bool; Whether or not to delete the workdir after execution.

5.4.2 lterative

The iterative sector decomposition routines.

exception pySecDec.decomposition.iterative.EndOfDecomposition
This exception is raised if the function i teration_step () is called although the sector is already in standard
form.

pySecDec.decomposition.iterative.find_singular_set (sector, indices=None)
Function within the iterative sector decomposition procedure which heuristically chooses an optimal decom-
position set. The strategy was introduced in arXiv:hep-ph/0004013 [BHOO] and is described in 4.2.2 of
arXiv:1410.7939 [Borl14]. Return a list of indices.

Parameters
* sector — Sector; The sector to be decomposed.
* indices - iterable of integers or None; The indices of the parameters to be considered

as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.iteration_step (sector, indices=None)

Run a single step of the iterative sector decomposition as described in chapter 3.2 (part IT) of arXiv:0803.4177v2
[HeiO8]. Return an iterator of Sector - the arising subsectors.

Parameters
* sector — Sector; The sector to be decomposed.
* indices - iterable of integers or None; The indices of the parameters to be considered

as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.iterative_decomposition (sector, indices=None)
Run the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [HeiO8].
Return an iterator of Sector - the arising subsectors.

Parameters
* sector — Sector; The sector to be decomposed.
* indices - iterable of integers or None; The indices of the parameters to be considered

as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.primary_ decomposition (sector, indices=None)
Perform the primary decomposition as described in chapter 3.2 (part I) of arXiv:0803.4177v2 [HeiO8]. Return
a list of Sector - the primary sectors. For N Feynman parameters, there are N primary sectors where the i-th
Feynman parameter is set to / in sector i.

68 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

See also:

primary_decomposition _polynomial ()

Parameters

* sector — Sector; The container holding the polynomials (typically U and F) to elimi-
nate the Dirac delta from.

* indices - iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.primary decomposition_polynomial (polynomial,
in-

dices=None)
Perform the primary decomposition on a single polynomial.

See also:

primary_decomposition ()

Parameters

* polynomial — algebra.Polynomial; The polynomial to eliminate the Dirac delta
from.

* indices - iterable of integers or None; The indices of the parameters to be considered
as integration variables. By default (indices=None), all parameters are considered as
integration variables.

pySecDec.decomposition.iterative.remap_parameters (singular_parameters, Jacobian,
*polynomials)
Remap the Feynman parameters according to eq. (16) of arXiv:0803.4177v2 [Hei08]. The parameter whose
index comes first in singular_parameters is kept fix.

The remapping is done in place; i.e. the polynomials are NOT copied.
Parameters

* singular parameters - list of integers; The indices «, such that at least one of poly-
nomials becomes zero if all ¢, — 0.

* Jacobian - Polynomial; The Jacobian determinant is multiplied to this polynomial.

* polynomials — abritrarily many instances of algebra.Polynomial where all of
these have an equal number of variables; The polynomials of Feynman parameters to be
remapped. These are typically F' and U.

Example:

remap_parameters([1,2], Jacobian, F, U)

5.4. Decomposition 69

pySecDec Documentation, Release 1.5.2

5.4.3 Geometric

The geometric sector decomposition routines.

pySecDec.decomposition.geometric.Cheng_Wu (sector, index=- 1)
Replace one Feynman parameter by one. This means integrating out the Dirac delta according to the Cheng-Wu

theorem.
Parameters

* sector — Sector; The container holding the polynomials (typically U and F') to elimi-
nate the Dirac delta from.

* index - integer, optional; The index of the Feynman parameter to eliminate. Default: -1
(the last Feynman parameter)

pySecDec.decomposition.geometric.generate_fan (*polynomials)
Calculate the fan of the polynomials in the input. The rays of a cone are given by the exponent vectors after
factoring out a monomial together with the standard basis vectors. Each choice of factored out monomials gives
a different cone. Only full (/V-) dimensional cones in Rgo need to be considered.

Parameters polynomials — abritrarily many instances of Polynomial where all of these have
an equal number of variables; The polynomials to calculate the fan for.

pySecDec.decomposition.geometric.geometric_decomposition (sector, indices=None,
normaliz="normaliz’,
workdir="normaliz_tmp')
Run the sector decomposition using the geomethod as described in [BHJ+15].

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz
for installation and a list of tested versions.

Parameters
* sector — Sector; The sector to be decomposed.

* indices — list of integers or None; The indices of the parameters to be considered as
integration variables. By default (indices=None), all parameters are considered as inte-
gration variables.

* normaliz — string; The shell command to run normaliz.

* workdir — string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

pySecDec.decomposition.geometric.geometric_decomposition_ku (sector, in-
dices=None, nor-
maliz="normaliz’,
workdir="normaliz_tmp")
Run the sector decomposition using the original geometric decomposition strategy by Kaneko and Ueda as
described in [KU10].

70 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz
for installation and a list of tested versions.

Parameters
* sector — Sector; The sector to be decomposed.

* indices - list of integers or None; The indices of the parameters to be considered as
integration variables. By default (indices=None), all parameters are considered as inte-
gration variables.

* normaliz — string; The shell command to run normaliz.

* workdir — string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

pySecDec.decomposition.geometric.transform variables (polynomial, transformation,
polysymbols="y")
Transform the parameters x; of a pySecDec.algebra.Polynomial,

Tij
i = [["
i

, where Tj; is the transformation matrix.
Parameters

* polynomial — pySecDec.algebra.Polynomial; The polynomial to transform the
variables in.

* transformation — two dimensional array; The transformation matrix 75;.

* polysymbols — string or iterable of strings; The symbols for the new variables. This
argument is passed to the default constructor of pySecDec.algebra.Polynomial.
Refer to the documentation of pySecDec.algebra.Polynomial for further details.

5.4.4 Splitting

Routines to split the integration between 0 and 1. This maps singularities from 1 to 0.

pySecDec.decomposition.splitting.find_singular_sets_at_one (polynomial)
Find all possible sets of parameters such that the polynomial’s constant term vanishes if these parameters are set
to one.

Example:

>>> from pySecDec.algebra import Polynomial

>>> from pySecDec.decomposition.splitting import find_singular_sets_at_one
>>> polysymbols = ['x0', 'x1'"]

>>> poly = Polynomial.from_expression('l - 10%xx0 - x1', polysymbols)

>>> find_singular_sets_at_one (poly)

[(1,)]

5.4. Decomposition 71

pySecDec Documentation, Release 1.5.2

Parameters polynomial — Polynomial; The polynomial to search in.
pySecDec.decomposition.splitting.remap_one_to_zero (polynomial, *indices)
Apply the transformation x — 1 — x to polynomial for the parameters of the given indices.
Parameters
* polynomial — Polynomial; The polynomial to apply the transformation to.

* indices — arbitrarily many int; The indices of the polynomial.polysymbols to
apply the transformation to.

Example:

>>> from pySecDec.algebra import Polynomial

>>> from pySecDec.decomposition.splitting import remap_one_to_zero
>>> polysymbols = ['x0"']

>>> polynomial = Polynomial.from_expression('x0', polysymbols)

>>> remap_one_to_zero (polynomial, 0)

+ (1) + (=1)=x0

pySecDec.decomposition.splitting.split (sector, seed, *indices)
Split the integration interval [0, 1] for the parameters given by indices. The splitting point is fixed using numpy’s
random number generator.

Return an iterator of Sector - the arising subsectors.

Parameters sector — Sector; The sector to be split.
:param seed; integer; The seed for the random number generator that is used to fix the splitting point.
Parameters indices — arbitrarily many integers; The indices of the variables to be split.

pySecDec.decomposition.splitting.split_singular (sector, seed, indices=[])
Split the integration interval [0, 1] for the parameters that can lead to singularities at one for the polynomials in
sector.cast.

Return an iterator of Sector - the arising subsectors.
Parameters
* sector — Sector; The sector to be split.

* seed - integer; The seed for the random number generator that is used to fix the splitting
point.

* indices - iterables of integers; The indices of the variables to be split if required. An
empty iterator means that all variables may potentially be split.

5.5 Matrix Sort

Algorithms to sort a matrix when column and row permutations are allowed.

pySecDec.matrix_sort.Pak_sort (matrix, *indices)
Inplace modify the matrix to some canonical ordering, when permutations of rows and columns are allowed.

The indices parameter can contain a list of lists of column indices. Only the columns present in the same list are
swapped with each other.

The implementation of this function is described in chapter 2 of [Pak11].

72 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Note: If not all indices are considered the resulting matrix may not be canonical.

See also:

iterative_sort (), light_Pak sort ()

Parameters
* matrix — 2D array-like; The matrix to be canonicalized.
* indices - arbitrarily many iterables of non-negative integers; The groups of columns to

permute. Default: range (1, matrix.shape([1])

pySecDec.matrix_sort.iterative_sort (matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are
allowed.

Note: This function may result in different orderings depending on the initial ordering.

See also:

Pak_sort (), 1light_Pak_sort ()
Parameters matrix — 2D array-like; The matrix to be canonicalized.

pySecDec.matrix_sort.light_Pak_sort (matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are
allowed. The implementation of this function is described in chapter 2 of [Pak11]. This function implements a
lightweight version: In step (v), we only consider one, not all table copies with the minimized second column.

Note: This function may result in different orderings depending on the initial ordering.

See also:

iterative_ sort (), Pak_sort ()

Parameters matrix — 2D array-like; The matrix to be canonicalized.

5.6 Subtraction

Routines to isolate the divergencies in an € expansion.

pySecDec.subtraction.integrate_by_parts (polyprod, power_goals, indices)
Repeatedly apply integration by parts,

1
e . 1
dtfl@bamcet)y G e ey) =
/O 7% (8, {tizs} €1, €2,) a;j+1—bje; —cea — ...

1

<I(1, {ti;éj}, €1, €,) . / dtjt;aj+1_bjel_062+
0

, where 7' denotes the derivative of Z with respect to t;. The iteration stops, when a; >= power_goal_j.

See also:

This function provides an alternative to integrate _pole_part ().

5.6. Subtraction 73

pySecDec Documentation, Release 1.5.2

Parameters

* polyprod - algebra.Product of the form <product of <monomial>+x* (a_j
+ ...)> % <regulator poles of cal_I> x <cal_I>; The input product
as decribed above. The <product of <monomial>**(a_j + ...)> should be a
pySecDec.algebra.Product of <monomial>**(a_j + ...). as described be-
low. The <monomial>**(a_j + ...) should be an pySecDec.algebra.
ExponentiatedPolynomial with exponent being a Polynomial of the regu-
lators €1, €3, Although no dependence on the Feynman parameters is expected in the
exponent, the polynomial variables should be the Feynman parameters and the regula-
tors. The constant term of the exponent should be numerical. The polynomial variables
of monomial and the other factors (interpreted as Z) are interpreted as the Feynman pa-
rameters and the epsilon regulators. Make sure that the last factor (<cal_TI>) is defined
and finite for ¢ = 0. All poles for ¢ — 0 should be made explicit by putting them into
<regulator poles of cal_I> as pySecDec.algebra.Pow with exponent
= -1 and the base of type pySecDec.algebra.Polynomial.

* power_goals — number or iterable of numbers, e.g. float, integer, ...; The stopping
criterion for the iteration.

* indices —iterable of integers; The index/indices of the parameter(s) to partially integrate.
j in the formulae above.
Return the pole part and the numerically integrable remainder as a list. Each returned list element has the same

structure as the input polyprod.

pySecDec.subtraction.integrate_pole_part (polyprod, *indices)
Transform an integral of the form

1
/ dtjt P TIL (g i) e e,)
0

into the form

la]—1

1 IW(0, {tiz;}, €1, €2,-) b (ambe—ceat.)
» 1Ll s €1, €2, dt'tza €1—Céa+... R t', ti 1 erea,
pz:%a—kp—l—l—bel—ceg—... p! +/0 773 (]{#} €1,€2,)

, where Z(P) denotes the p-th derivative of Z with respect to t;. The equations above are to be understood
schematically.

See also:
This function implements the transformation from equation (19) to (21) as described in arXiv:0803.4177v2
[Hei08].

Parameters

e polyprod-— algebra.Product of the form <product of <monomial>+*x (a_j
+ ...)> % <regulator poles of cal_I> x <cal_I>; The input product
as decribed above. The <product of <monomial>**(a_j + ...)> should be a
pySecDec.algebra.Product of <monomial>**(a_j + ...). as described be-

low. The <monomial>**(a_j + ...) should be an pySecDec.algebra.
ExponentiatedPolynomial with exponent being a Polynomial of the regu-
lators €1, €9, Although no dependence on the Feynman parameters is expected in the

exponent, the polynomial variables should be the Feynman parameters and the regula-
tors. The constant term of the exponent should be numerical. The polynomial variables
of monomial and the other factors (interpreted as 7) are interpreted as the Feynman pa-
rameters and the epsilon regulators. Make sure that the last factor (<cal_TI>) is defined

74 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

and finite for e = 0. All poles for ¢ — 0 should be made explicit by putting them into
<regulator poles of cal_I> as pySecDec.algebra.Pow with exponent
= -1 and the base of type pySecDec.algebra.Polynomial.

* indices - arbitrarily many integers; The index/indices of the parameter(s) to partially

integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. That is the sum and the integrand of
equation (21) in arXiv:0803.4177v2 [HeiO8]. Each returned list element has the same structure as the input
polyprod.

pySecDec.subtraction.pole_structure (monomial_product, *indices)
Return a list of the unregulated exponents of the parameters specified by indices in monomial_product.

Parameters

* monomial_product - pySecDec.algebra.ExponentiatedPolynomial with
exponent being a Polynomial; The monomials of the subtraction to extract the pole
structure from.

* indices — arbitrarily many integers; The index/indices of the parameter(s) to partially
investigate.

5.7 Expansion

Routines to series expand singular and nonsingular expressions.

exception pySecDec.expansion.OrderError
This exception is raised if an expansion to a lower than the lowest order of an expression is requested.

pySecDec.expansion.expand_Taylor (expression, indices, orders)
Series/Taylor expand a nonsingular expression around zero.

Return a algebra.Polynomial - the series expansion.
Parameters

* expression — an expression composed of the types defined in the module algebra;
The expression to be series expanded.

* indices - integer or iterable of integers; The indices of the parameters to expand. The
ordering of the indices defines the ordering of the expansion.

* order —integer or iterable of integers; The order to which the expansion is to be calculated.

pySecDec.expansion.expand_singular (product, indices, orders)
Series expand a potentially singular expression of the form

aneg +byer + ...
apey +bper + ...

Return a algebra.Polynomial - the series expansion.
See also:

To expand more general expressions use expand_sympy ().

Parameters

e product - algebra.Product with factors of the form <polynomial> and
<polynomial> *=* —1;The expression to be series expanded.

5.7. Expansion 75

pySecDec Documentation, Release 1.5.2

ordering of the indices defines the ordering of the expansion.

* indices — integer or iterable of integers; The indices of the parameters to expand. The

* order —integer or iterable of integers; The order to which the expansion is to be calculated.

pySecDec.expansion.expand_sympy (expression, variables, orders)
Expand a sympy expression in the variables to given orders. Return the expansion as nested pySecDec.
algebra.Polynomial.

See also:

This function is a generalization of expand_singular ().

Parameters

* expression - string or sympy expression; The expression to be expanded

* variables —iterable of strings or sympy symbols; The variables to expand the expression

m.

* orders —iterable of integers; The orders to expand to.

5.8 Code Writer

This module collects routines to create a c++ library.

5.8.1 Make Package

This is the main function of pySecDec.

pySecDec.code_writer.make_package (name, integration_variables, regulators, requested_orders,

polynomials_to_decompose,
other_polynomials=[],

polynomial_names=[],

prefactor=1, remain-

der_expression=1, functions=[], real_parameters=[],

complex_parameters=[],
form_work_space="50M",
form_threads=2,

form_optimization_level=2,

form_memory_use=None,
form_insertion_depth=35,

contour_deformation_polynomial=None,

positive_polynomials=[],

decomposi-

tion_method="iterative_no_primary’, nor-

maliz_executable="normaliz’,

enforce_complex=False,

split=False, ibp_power_goal=- 1, use_iterative_sort=True,
use_light_Pak=True, use_dreadnaut=False, use_Pak=True,
processes=None, pylink_gmc_transforms=["korobov3x3'])

Decompose, subtract and expand an expression. Return it as c++ package.

See also:

In order to decompose a loop integral, use the function pySecDec. loop_integral.loop_package ().

See also:

The generated library is described in Generated C++ Libraries.

Parameters

* name - string; The name of the c++ namepace and the output directory.

76

Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

integration_variables - iterable of strings or sympy symbols; The variables that
are to be integrated. The intgration region depends on the chosen decomposition_method.

regulators —iterable of strings or sympy symbols; The UV/IR regulators of the integral.

requested_orders — iterable of integers; Compute the expansion in the regulators to
these orders.

polynomials_to_decompose - iterable of strings or sympy expressions or
pySecDec.algebra.ExponentiatedPolynomial or pySecDec.algebra.
Polynomial; The polynomials to be decomposed.

polynomial_names - iterable of strings; Assign symbols for the polyno-
mials_to_decompose. These can be referenced in the other_polynomials; see
other_polynomials for details.

other_polynomials - iterable of strings or sympy expressions or pySecDec.
algebra.ExponentiatedPolynomial or pySecDec.algebra.Polynomial;
Additional polynomials where no decomposition is attempted. The symbols defined in poly-
nomial_names can be used to reference the polynomials_to_decompose. This is particularly
useful when computing loop integrals where the “numerator” can depend on the first and
second Symanzik polynomials.

Example (1-loop bubble with numerator):

>>> polynomials_to_decompose = [" (x0 + x1)x*%(2xeps - 4)",
e "(—p*x*2+xx0xx1) xx (—eps)) "]
>>> polynomial_names = ["U", "E"]
>>> other_polynomials = [""" (eps — 1) *s*xUxx2

+ (eps — 2)x*F

- (eps — 1) *2xs*xx0%U

+ (eps — 1) xsxx0xx2"""]

See also:
pySecDec.loop_integral

Note that the polynomial_names refer to the polynomials_to_decompose without their ex-
ponents.

prefactor — string or sympy expression, optional; A factor that does not depend on the
integration variables.

remainder_expression — string or sympy expression or pySecDec.algebra.
_Expression, optional; An additional factor.

Dummy function must be provided with all arguments, e.g.
remainder_expression="'exp (eps) *f (x0,x1) ". In addition, all dummy
function must be listed in functions.

functions - iterable of strings or sympy symbols, optional; Function symbols occuring
in remainder_expression, e.g.” [‘f]".

Note: Only user-defined functions that are provided as c++-callable code should be men-
tioned here. Listing basic mathematical functions (e.g. log, pow, exp, sqrt, ...) is not
required and considered an error to avoid name conflicts.

Note: The power function pow and the logarithm log use the nonstandard continuation
with an infinitesimal negative imaginary part on the negative real axis (e.g. log(-1) =

5.8. Code Writer

77

pySecDec Documentation, Release 1.5.2

—i*pi).

* real parameters - iterable of strings or sympy symbols, optional; Symbols to be in-
terpreted as real variables.

complex_parameters — iterable of strings or sympy symbols, optional; Symbols to be
interpreted as complex variables.

form_optimization_level - integer out of the interval [0,4], optional; The opti-
mization level to be used in FORM. Default: 2.

* form work_space - string, optional; The FORM WorkSpace. Default: ' 50M"'.

Setting this to smaller values will reduce FORM memory usage (without affecting perfor-
mance), but each problem has some minimum value below which FORM will refuse to
work: it will fail with error message indicating that larger WorkSpace is needed, at which
point WorkSpace will be adjusted and FORM will be re-run.

* form_memory_use - string, optional; The target FORM memory usage. When specified,
form.set parameters will be adjusted so that FORM uses at most approximately this much
resident memory.

The minimum is approximately to 600M + 350M per worker thread if form_work_space
is left at ' 50M". if form_work_space is increased to ' 500M "', then the minimum is 2.5G +
2.5G per worker thread. Default: None, meaning use the default FORM values.

* form_threads - integer, optional; Number of threads (T)FORM will use. Default: 2.

* form insertion_depth — nonnegative integer, optional; How deep FORM should try
to resolve nested function calls. Default: 5.

contour_deformation_polynomial — string or sympy symbol, optional; The name
of the polynomial in polynomial_names that is to be continued to the complex plane accord-
ing to a —id prescription. For loop integrals, this is the second Symanzik polynomial F. If
not provided, no code for contour deformation is created.

positive_polynomials — iterable of strings or sympy symbols, optional; The names
of the polynomials in polynomial_names that should always have a positive real part. For
loop integrals, this applies to the first Symanzik polynomial U. If not provided, no polyno-
mial is checked for positiveness. If contour_deformation_polynomial is None, this param-
eter is ignored.

decomposition_method - string, optional; The strategy to decompose the polynomi-
als. The following strategies are available:

- ’iterative_no_primary’ (default): integration region [0, 1] .

— ’geometric_no_primary’: integration region [0, 1]7V.
— ’geometric_infinity_no_primary’: integration region [0, oo]".
— ’iterative’: primary decomposition followed by integration over [0, 1]V 1.

— ’geometric’: xy is set to one followed by integration over [0, oo] V1

- ’geometric_ku’: primary decomposition followed by integration over [0, 1]V 1,

‘iterative’, ‘geometric’, and ‘geometric_ku’ are only valid for loop integrals. An
end user should use ‘iterative_no_primary’, ‘geometric_no_primary’, or ‘geomet-
ric_infinity_no_primary’ here. In order to compute loop integrals, please use the function
pySecDec. loop_integral.loop package().

78 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

* normaliz_executable - string, optional; The command to run normaliz. normaliz is
only required if decomposition_method starts with ‘geometric’. Default: ‘normaliz’

* enforce_complex — bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if confour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if 1og (<negative real>) occursinone of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

* split - bool or integer, optional; Whether or not to split the integration domain in order
to map singularities from 1 to 0. Set this option to True if you have singularties when one
or more integration variables are one. If an integer is passed, that integer is used as seed to
generate the splitting point. Default: False

* ibp_power_goal — number or iterable of number, optional; The power_goal that is for-
warded to integrate by parts().

This option controls how the subtraction terms are generated. Setting it to —numpy.inf
disables integrate by parts (), while 0 disables integrate_pole_part ().

See also:

To generate the subtraction terms, this function first calls integrate by parts()
for each integration variable with the give ibp_power_goal. Then
integrate pole part () is called.

Default: -1

* use_iterative_ sort — bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with iterative_sort ()
to find sector symmetries. Default: True

* use_light_Pak - bool; Whether or not to use
squash_symmetry_redundant_sectors_sort () with l1ight_Pak_sort ()
to find sector symmetries. Default: True

* use_dreadnaut - bool or string, optional; Whether or not to use
squash_symmetry_redundant_sectors_dreadnaut () to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
SSECDEC_CONTRIB is not set, dreadnaut. Default: False

* use_Pak —bool; Whether or not touse squash_symmetry redundant_sectors_sort ()
with Pak_sort () to find sector symmetries. Default: True

* processes — integer or None, optional; Parallelize the package generation using at
most this many processes. If None, use the total number of logical CPUs on the system
(that is, os.cpu_count ()), or the number of CPUs allocated to the current process
(len (os.sched_getaffinity (0))), on platforms where this information is avail-
able (i.e. Linux+glibc). New in version 1.3. Default: None

* pylink_gmc_transforms — list or None, optional; Required gmc integral transforms,
options are:

— korobov<i>x<j>forl<=1ij<=6
— korobov<i> for 1 <=i<=6 (same as korobov<i>x<i>)

— sidi<i>forl<=i<=6

5.8. Code Writer 79

pySecDec Documentation, Release 1.5.2

New in version 1.5. Default: ['korobov3x3']

5.8.2 Sum Package

Computing weighted sums of integrals, e.g. amplitudes.

class pySecDec.code_writer.sum_package.Coefficient (numerators, denominators, pa-

rameters)
Store a coefficient expressed as a product of terms in the numerator and a product of terms in the denominator.

Parameters
e numerators — iterable of str; The terms in the numerator.
* denominators — iterable of str; The terms in the denominator.
* parameters — iterable of strings or sympy symbols; The symbols other parameters.

process (regulators, form=None, workdir=form_tmp’', keep_workdir=False)
Calculate and return the lowest orders of the coefficients in the regulators and a string defining the expres-
sions “numerator”, “denominator”, and “regulator_factor”.

Parameters

* regulators — iterable of strings or sympy symbols; The symbols denoting the regula-
tors.

e form — string or None; If given a string, interpret that string as the command line
executable form. If None, try $FORM (if the environment variable $SFORM is set),
SSECDEC_CONTRIB/bin/form (if SSECDEC_CONTRIB is set), and form.

* workdir - string; The directory for the communication with form. A directory with the
specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with form is done via files.

¢ keep_workdir — bool; Whether or not to delete the workdir after execution.

pySecDec.code_writer.sum_package.sum_package (name, package_generators, regulators,
requested_orders, real_parameters=[],
complex_parameters=[], coeffi-
cients=None, form_executable=None,
pylink_gmec_transforms=["'korobov3x3'],

processes=1)
Decompose, subtract and expand a list of expressions of the form

e [

Generate a c++ package with an optmized algorithm to evaluate the integrals numerically. It writes the names
of the integrals in the file “integral_names.txt”. For the format of the file see Parser.

Parameters
* name - string; The name of the c++ namepace and the output directory.

* package_generators — iterable of pySecDec.code_writer MakePackage and/or py-
SecDec.loop_integral.LoopPackage namedtuples; The generator functions for the integrals

J fi

80 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Note: The pySecDec.code_writer.MakePackage and pySecDec.loop_integral. LoopPackage
objects have the same argument list as their respective parent functions pySecDec.
code_writer.make package () and pySecDec.loop_integral.
loop_package ().

* regulators —iterable of strings or sympy symbols; The UV/IR regulators of the integral.

* requested_orders - iterable of integers; Compute the expansion in the regulators to
these orders.

* real_parameters — iterable of strings or sympy symbols, optional; Symbols to be in-
terpreted as real variables.

* complex_parameters — iterable of strings or sympy symbols, optional; Symbols to be
interpreted as complex variables.

* coefficients —iterable of iterable of Coefficient, optional; The coefficients c;; of
the integrals. ¢;; = 1 with i € {0} is assumed if not provided.

* form_executable - string or None, optional; The path to the form exectuable. The
argument is passed to Coefficient.process (). If None, then either $SFORM,
$SECDEC_CONTRIB/bin/form, or just form is used, depending on which environ-
ment variable is set. Default: None.

* pylink_gmc_transforms - list or None, optional; Required gmc integral transforms,
options are:

— korobov<i>x<ij>forl <=1ij<=6

— korobov<i> for 1 <=i<=6 (same as korobov<i>x<i>)
- sidi<i>forl<=i<=6

Default: ['korobov3x3"']

* processes — integer or None, optional; Parallelize the generation of terms in a sum using
this many processes.

When set to a value larger than 1, this will override the processes argument of the terms
in a sum, meaning that each term will not use parallelization, but rather different terms will
be generated in parallel.

Default: 1

5.8.3 Template Parser

Functions to generate c++ sources from template files.

pySecDec.code_writer.template_parser.generate_pylink_dgmc_macro_dict (macro_function_name)
Generate translation from transform short names ‘korobov#x#’ and ‘sidi#’ to C++ macros

Parameters macro_function_name — string; Name of the macro function to consider

Returns dict; A mapping between the transform short names and C++ macros

pySecDec.code_writer.template_parser.parse_template_ file (src, dest, replace-
ments={})
Copy a file from src to dest replacing % (. . .) instructions in the standard python way.

5.8. Code Writer 81

pySecDec Documentation, Release 1.5.2

Warning: If the file specified in dest exists, it is overwritten without prompt.

See also:

parse_template_tree()

Parameters
* src - str; The path to the template file.
* dest - str; The path to the destination file.

* replacements — dict; The replacements to be performed. The standard python replace-
ment rules apply:

>>> ! = "% dict(
var = 'my_variable',
.. value = 5)
'my_variable = 5'
pySecDec.code_writer.template_parser.parse_template_tree (src, dest, replace-
ments_in_files={},
filesys-

tem_replacements={})
Copy a directory tree from src to dest using parse template file () for each file and replacing the

filenames according to filesystem_replacements.
See also:

parse_template_file()

Parameters
* src - str; The path to the template directory.
* dest — str; The path to the destination directory.

* replacements_in_files — dict; The replacements to be performed in the files. The
standard python replacement rules apply:

>>> ! = "% dict(
var = 'my_variable',

.. value = 5)

'my_variable = 5'

* filesystem replacements — dict; Renaming rules for the destination files. and di-
rectories. If a file or directory name in the source tree src matches a key in this dictionary,
it is renamed to the corresponding value. If the value is None, the corresponding file is
ignored.

pySecDec.code_writer.template_parser.validate_pylink_damc_transforms (pylink_gmc_transforms)
Check if pylink_gmc_transforms are valid options and remove duplicates

Parameters pylink_gmc_transforms - list or None; Required qmc integral transforms, op-
tions are:

* korobov<i>x<ij>forl<=1j<=6

* korobov<i> for 1 <=1i<=6 (same as korobov<i>x<i>)

82 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

e sidi<i>forl<=i<=6

Returns Sorted set of pylink_gmc_transforms

5.9 Generated C++ Libraries

A C++ Library to numerically compute a given integral/ loop integral can be generated by the sum_package (),
loop_package () functions. The name passed to the make package () or loop_package () function will be
used as the C++ namespace of the generated library. A program demonstrating the use of the C++ library is generated
for each integral and written to name/integrate_name . cpp. Here we document the C++ library APIL

See also:

C++ Interface

5.9.1 Amplitude/Sum libraries

New in version 1.5.
Generated by sum_package () in the folder name.

const unsigned long long number of_integrals
The number of integrals in the library.

const unsigned int number_of_amplitudes
The number of amplitudes in the library.

const unsigned int number of_real parameters
The number of real parameters on which the integral depends.

const std::vector<std::string> names_of_real_ parameters
An ordered vector of string representations of the names of the real parameters.

const unsigned int number_ of_complex_parameters
The number of complex parameters on which the integral depends.

const std::vector<std::string> names_of_ complex parameters
An ordered vector of string representations of the names of the complex parameters.

const unsigned int number_ of_regulators
The number of regulators on which the integral depends.

const std::vector<std::string> names_of_ regulators
A vector of the names of the regulators.

const std::vector<int> requested_orders
A vector of the requested orders of each regulator used to generate the C++ library, i.e. the requested_orders
parameter passed to make_package (), loop_package () or sum_package ().

typedef double real_t
The real type used by the library.

typedef std::complex<real t> complex_t
The complex type used by the library.

const unsigned int maximal_number_of_integration_variables = 2;

type integrand_return_t
The return type of the integrand function. If the integral has complex parameters or uses contour deformation

5.9. Generated C++ Libraries 83

pySecDec Documentation, Release 1.5.2

or if enforce_complex is set to True in the call to make_package () or loop_package () then inte-
grand_return_t is complex_t. Otherwise integrand_return_t is real_t.

template<typename T> nested series_t = secdecutil::Series<secdecutil: :Series<...<T>>>
A potentially nested secdecutil: :Series representing the series expansion in each of the regulators. If
the integral depends on only one regulator (for example, a loop integral generated with 1oop_package ())
this type will be a secdecutil::Series. For integrals that depend on multiple regulators then this will
be a series of series representing the multivariate series. This type can be used to write code that can handle
integrals depending on arbitrarily many regulators.

See also:
secdecutil::Series

template<typename T> using amplitudes_t = std::vector<nested_ series_t<T>>
A vector of nested secdecutil: :Series representing the amplitudes.

typedef secdecutil::IntegrandContainer<integrand return_t, real_t const * const, real t> i
The type of the integrands. Within the generated C++ library integrands are stored in a container along with the
number of integration variables upon which they depend. These containers can be passed to an integrator for
numerical integration.

type cuda_integrand t
The type of a single integrand (sector) usable on a CUDA device (GPU). This container can be passed to an
integrator for numerical integration.

See also:

secdecutil::IntegrandContainer, secdecutil::Integrator, and
secdecutil::integrators: :Qmc.

typedef integrand t user_integrand t
A convenience type of referring to either an integrand_t or cuda_integrand_t if the library was built with a
CUDA compatible compiler.

typedef secdecutil::amplitude::Integral<integrand return_t,real_t> integral_t
The type of the amplitude integral wrapper.

Warning: The precise definition and usage of secdecutil::amplitude: :Integral is likely to
change in future versions of pySecDec.

typedef secdecutil::amplitude::WeightedIntegral<integral_t, integrand return_t> weighted_ in
The type of the weighted integral. Weighted integrals consist of an integral, 1, and the coefficient of the integral,
C. A WeightediIntegral is interpreted as the product C*I and can be used to represent individual terms in an
amplitude.

typedef std::vector<weighted_integral_t> sum_t
The type of a sum of weighted integrals.

template<template<typename...> class container_t> using handler t = secdecutil::amplitude:
The type of the weighted integral handler. A WeightedIntegralHandler defines an algorithm for evaluating a
sum of weighted integrals.

std::vector<nested_series_t<sum_t>>make_amplitudes (const std::vector<real_t> &real_parameters,
const std::vector<complex_t> &com-
plex_parameters, const std::string &lib_path,

const integrator_t &integrator)
(without contour deformation)

84 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

std::vector<nested_series_t<sum_t>>make_amplitudes (const std::vector<real_t> &real_parameters,
const std::vector<complex_t> &com-
plex_parameters, const std::string &lib_path,
const integrator_t &integrator, unsigned
number_of _presamples = 100000, real t de-

formation_parameters_maximum = 1., real_t
deformation_parameters_minimum = l.e-5,
real_t deformation_parameters_decrease_factor
=0.9)

(with contour deformation)

Constructs and returns a vector of amplitudes ready to be passed to a WeightedIntegralHandler for evalua-
tion. Each element of the vector contains an amplitude (weighted sum of integrals). The real and complex
parameters are bound to the values passed in real_parameters and complex_parameters. The lib_path param-
eter is used to specify the path to the coefficients and individual integral libraries. The integrator parame-
ter is used to specify which integrator should be used to evaluate the integrals. If enabled, contour defor-
mation is controlled by the parameters number_of_presamples, deformation_parameters_maximum, deforma-
tion_parameters_minimum, deformation_parameters_decrease_factor which are documented in pySecDec.
integral_interface.IntegrallLibrary.

5.9.2 Integral libraries

Generated by make package () in the folder name or by sum package () in the folder name/
name_integral.

typedef double real_t
The real type used by the library.

typedef std::complex<real t> complex_t
The complex type used by the library.

type integrand_ return_t
The return type of the integrand function. If the integral has complex parameters or uses contour deformation
or if enforce_complex is set to True in the call to make_package () or 1oop_package () then inte-
grand_return_t is complex_t. Otherwise integrand_return_t is real_t.

template<typename T> nested_series_t = secdecutil::Series<secdecutil: :Series<..

A potentially nested secdecutil: :Series representing the series expansion in each of the regulators. If
the integral depends on only one regulator (for example, a loop integral generated with 1oop_package ())
this type will be a secdecutil: :Series. For integrals that depend on multiple regulators then this will
be a series of series representing the multivariate series. This type can be used to write code that can handle
integrals depending on arbitrarily many regulators.

See also:
secdecutil::Series

typedef secdecutil::IntegrandContainer<integrand_return_t, real_t const*const> integrand_t
The type of the integrand. Within the generated C++ library integrands are stored in a container along with the
number of integration variables upon which they depend. These containers can be passed to an integrator for
numerical integration.

See also:
secdecutil::IntegrandContainer and secdecutil: :Integrator.

type cuda_integrand_ t
New in version 1.4.

5.9. Generated C++ Libraries 85

L<T>>>

pySecDec Documentation, Release 1.5.2

The type of a single integrand (sector) usable on a CUDA device (GPU). This container can be passed to an
integrator for numerical integration.

See also:

secdecutil::IntegrandContainer, secdecutil::Integrator, and
secdecutil::integrators: :Qmc.

type cuda_together_integrand t
New in version 1.4.

The type of a sum of integrands (sectors) usable on a CUDA device (GPU). This container can be passed to an
integrator for numerical integration.

See also:

secdecutil::IntegrandContainer, secdecutil::Integrator, and
secdecutil::integrators: :0mc.

const unsigned long long number_ of_sectors
The number of sectors generated by the sector decomposition.

Changed in version 1.3.1: Type was unsigned int in earlier versions of pySecDec.

const unsigned int maximal_number_ of_integration_variables
The number of integration variables after primary decomposition. This provides an upper bound in the number
of integration variables for all integrand functions. The actual number of integration variables may be lower for
a given integrand.

const unsigned int number of_regulators
The number of regulators on which the integral depends.

const unsigned int number_of_real_parameters
The number of real parameters on which the integral depends.

const std::vector<std::string> names_of_real parameters
An ordered vector of string representations of the names of the real parameters.

const unsigned int number_of_complex_parameters
The number of complex parameters on which the integral depends.

const std::vector<std::string> names_of_complex_parameters
An ordered vector of string representations of the names of the complex parameters.

const std::vector<int> lowest_orders
A vector of the lowest order of each regulator which appears in the integral, not including the prefactor.

const std::vector<int> highest_orders
A vector of the highest order of each regulator which appears in the integral, not including the prefactor. This
depends on the requested_orders and prefactor/additional_prefactor parameter passed to make_package ()
or loop_package (). In the case of 1oop_package () it also depends on the I'-function prefactor of the
integral which appears upon Feynman parametrization.

const std::vector<int> lowest_prefactor_orders
A vector of the lowest order of each regulator which appears in the prefactor of the integral.

const std::vector<int> highest_prefactor_orders
A vector of the highest order of each regulator which appears in the prefactor of the integral.

const std::vector<int> requested_orders
A vector of the requested orders of each regulator used to generate the C++ library, i.e. the requested_orders
parameter passed to make_package () or loop_package ().

86 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

const std::vector<nested_series_t<sector_container_t>> &get_sectors ()

Changed in version 1.3.1: The variable sectors has been replaced by this function.

A low level interface for obtaining the underlying integrand C++ functions.

Warning: The precise definition and usage of get__sectors () is likely to change in future versions of
pySecDec.

nested_series_t<integrand_return_t>prefactor (const std::vector<real t> &real_parameters, const

std::vector<complex_t> &complex_parameters)
The series expansion of the integral prefactor evaluated with the given parameters. If the library was gen-

erated using make_package () it will be equal to the prefactor passed to make_package (). If the li-
brary was generated with loop_package () it will be the product of the additional_prefactor passed to
loop_package () and the I'-function prefactor of the integral which appears upon Feynman parametriza-
tion.

const std::vector<std::vector<real_t>>pole_structures

A vector of the powers of the monomials that can be factored out of each sector of the polynomial during the
decomposition.

Example: an integral depending on variables = and y may have two sectors, the first may have a monomial
271y ~2 factored out and the second may have a monomial 2! factored out during the decomposition. The
resulting pole_structures would read { {-1,-2}, {-1,0} }. Poles of type 21 are known as logarithmic
poles, poles of type 22 are known as linear poles.

std::vector<nested_series_t<integrand_t>>make_integrands (const std::vector<real_t>
&real_parameters, const
std::vector<complex_t> &com-
plex_parameters)

(without contour deformation)

std::vector<nested_series_t<cuda_integrand_t>>make_cuda_integrands (const std::vector<real_t>

&real_parameters, const
std::vector<complex_t>

&complex_parameters)
New in version 1.4.

(without contour deformation) (CUDA only)

std::vector<nested_series_t<integrand_t>>make_integrands (const std::vector<real >

&real_parameters, const
std::vector<complex_t> &com-
plex_parameters, unsigned num-
ber_of _presamples = 100000, real_t
deformation_parameters_maximum = 1.,
real_t deformation_parameters_minimum
= 1.e-5, real_t deforma-
tion_parameters_decrease_factor =
0.9)

(with contour deformation)

5.9. Generated C++ Libraries 87

pySecDec Documentation, Release 1.5.2

std::vector<nested_series_t<cuda_integrand_t>>make_cuda_integrands (const std::vector<real_r>

&real_parameters, const
std::vector<complex_t>
&complex_parameters,
unsigned num-
ber_of _presamples =
100000, real_t deforma-
tion_parameters_maximum
= 1, real_t deforma-
tion_parameters_minimum
= l.e-5, vreal_t deforma-
tion_parameters_decrease_factor
=0.9)

New in version 1.4.

(with contour deformation) (CUDA only)

Gives a vector containing the series expansions of individual sectors of the integrand after sector de-
composition with the specified real_parameters and complex_parameters bound. Each element of the
vector contains the series expansion of an individual sector. The series consists of instances of
integrand_t (cuda_integrand_t) which contain the integrand functions and the number of inte-
gration variables upon which they depend. The real and complex parameters are bound to the values
passed in real_parameters and complex_parameters. If enabled, contour deformation is controlled by the
parameters number_of _presamples, deformation_parameters_maximum, deformation_parameters_minimum,
deformation_parameters_decrease_factor which are documented in pySecDec. integral interface.
IntegralLibrary. In case of a sign check error (sign_check_error), manually set number_of_presamples,
deformation_parameters_maximum, and deformation_parameters_minimum.

Passing the infegrand_t to the secdecutil: :Integrator: :integrate () function of an instance of a
particular secdecutil: : Integrator will return the numerically evaluated integral. To integrate all orders
of all sectors secdecutil: :deep apply () canbe used.

Note: This is the recommended way to access the integrand functions.

See also:

C++ Interface, Integrator Examples, pySecDec.integral_interface.IntegrallLibrary

5.10 Integral Interface

An interface to libraries generated by pySecDec.code writer.make package () or pySecDec.

loop_integral.loop package ().

class pySecDec.integral_interface.CPPIntegrator

Abstract base class for integrators to be used with an TntegralLibrary. This class holds a pointer to the

c++ integrator and defines the destructor.

class pySecDec.integral_interface.CQuad (integral_library, epsrel=0.01, epsabs=1e-07,

n=100, verbose=False, zero_border=0.0)
Wrapper for the cquad integrator defined in the gsl library.

Parameters integral_library — IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in Section 4.6.1 and in the gsl manual.

88 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

class pySecDec.integral_interface.CudaQme (integral_library, transform="korobov3’,

fitfunction="default', generatingvec-

tors="default’, epsrel=0.01, epsabs=1e-07,
maxeval=4611686018427387903, error-
mode="default', evaluateminn=0, minn=10000,
minm=0, maxnperpackage=0, maxmperpack-
age=0, cputhreads=None, cudablocks=0,
cudathreadsperblock=0, verbosity=0, seed=0,
devices=[])

Wrapper for the Qmc integrator defined in the integrators library for GPU use.

Parameters

See also:

* integral_library — IntegralLibrary; The integral to be computed with this

integrator.

errormode - string; The errormode parameter of the Qmc, can be "default", "all",
and "largest". "default" takes the default from the Qmc library. See the Qmc docs
for details on the other settings.

transform - string; An integral transform related to the parameter P of the Qmec. The
possible choices correspond to the integral transforms of the underlying Qmc implementa-
tion. Possible values are, "none", "baker", sidi#, "korobov#", and korobov#x#
where any # (the rank of the Korobov/Sidi transform) must be an integer between 1 and 6.

fitfunction - string; An integral transform related to the parameter F of the Qmc. The
possible choices correspond to the integral transforms of the underlying Qmc implementa-
tion. Possible values are "default", "none", "polysingular".

generatingvectors - string; The name of a set of generating vectors. The possi-
ble choices correspond to the available generating vectors of the underlying Qmc imple-
mentation. Possible values are "default", "cbcpt_dnl_100", "cbcpt_dn2_6",
"chcpt_cfftwl_6",and "cbcpt_cfftw2_10".

cputhreads - int; The number of CPU threads that should be used to evaluate the inte-
grand function.

The default is the number of logical CPUs allocated to the current process (that is,
len(os.sched_getaffinity (0))) on platforms that expose this information (i.e.
Linux+glibc), or os . cpu_count ().

If GPUs are used, one additional CPU thread per device will be launched for communicating
with the device. One can set ~ cputhreads” to zero to disable CPU evaluation in this case.

The most important options are described in Section 4.6.2.

The other options are defined in the Qmc docs. If an argument is omitted then the default of the underlying Qmc
implementation is used.

class pySecDec.integral_interface.Cuhre (integral_library, epsrel=0.01, epsabs=1e-

07, flags=0, mineval=10000, maxe-
val=4611686018427387903, zero_border=0.0,
key=0, real_complex_together=False)

Wrapper for the Cuhre integrator defined in the cuba library.

Parameters integral_ library — IntegralLibrary; The integral to be computed with

this integrator.

The other options are defined in Section 4.6.3 and in the cuba manual.

5.10. Integral Interface

89

pySecDec Documentation, Release 1.5.2

class pySecDec.integral_interface.Divonne (integral_library, epsrel=0.01, epsabs=1e-07,

flags=0, seed=0, mineval=10000, maxe-
val=4611686018427387903, zero_border=0.0,
keyl1=2000, key2=1, key3=I1, maxpass=4,
border=0.0, maxchisq=1.0, mindeviation=0.15,
real_complex_together=False)

Wrapper for the Divonne integrator defined in the cuba library.

Parameters integral library — IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in Section 4.6.3 and in the cuba manual.

class pySecDec.integral_interface.Integrallibrary (shared_object_path)
Interface to a c++ library produced by make_package () or loop_package ().

Parameters shared_object_path — str; The path to the file “<name>_pylink.so” that can be
built by the command

$ make pylink

in the root directory of the c++ library.

Instances of this class can be called with the following arguments:

Parameters

real_parameters — iterable of float; The real_parameters of the library.
complex_parameters —iterable of complex; The complex parameters of the library.

together - bool, optional; Whether to integrate the sum of all sectors or to integrate the
sectors separately. Default: True.

number_of_presamples — unsigned int, optional; The number of samples used for the
contour optimization. A larger value here may resolve a sign check error (sign_check_error).
This option is ignored if the integral library was created without deformation. Default:
100000.

deformation_parameters_maximum — float, optional; The maximal value the de-
formation parameters A; can obtain. Lower this value if you get a sign check error
(sign_check_error). If number_of_presamples=0, all \; are set to this value. This
option is ignored if the integral library was created without deformation. Default: 1. 0.

deformation_parameters_minimum — float, optional; The minimal value the de-
formation parameters A; can obtain. Lower this value if you get a sign check error
(sign_check_error). If number_of_presamples=0, all \; are set to this value. This
option is ignored if the integral library was created without deformation. Default: 1e-5.

deformation_parameters_decrease_factor - float, optional; If the sign
check with the optimized A; fails during the presampling stage, all \; are mul-
tiplied by this value until the sign check passes. We recommend to rather
Change number_of_presamples, deformation_parameters_maximum, and
deformation_parameters_minimum in case of a sign check error. This option is
ignored if the integral library was created without deformation. Default: 0. 9.

epsrel - float, optional; The desired relative accuracy for the numerical evaluation of the
weighted sum of the sectors. Default: epsrel of integrator (default 0.2).

epsabs — float, optional; The desired absolute accuracy for the numerical evaluation of the
weighted sum of the sectors. Default: epsabs of integrator (default 1e-7).

90

Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

* maxeval — unsigned int, optional; The maximal number of integrand evaluations for each
sector. Default: maxeval of integrator (default 2**62-1).

* mineval - unsigned int, optional; The minimal number of integrand evaluations for each
sector. Default: mineval/minn of integrator (default 10000).

* maxincreasefac — float, optional; The maximum factor by which the number of inte-
grand evaluations will be increased in a single refinement iteration. Default: 20.

* min_epsrel - float, optional; The minimum relative accuracy required for each individ-
ual sector. Default: 0. 2

* min_epsabs - float, optional; The minimum absolute accuracy required for each individ-
ual sector. Default: 1.e—4.

* max_epsrel - float, optional; The maximum relative accuracy assumed possible for each
individual sector. Any sector known to this precision will not be refined further. Note: if this
condition is met this means that the expected precision will not match the desired precision.
Default: 1.e-14.

* max_epsabs —float, optional; The maximum absolute accuracy assumed possible for each
individual sector. Any sector known to this precision will not be refined further. Note: if this
condition is met this means that the expected precision will not match the desired precision.
Default: 1.e-20.

* min_decrease_factor - float, optional; If the next refinement iteration is expected
to make the total time taken for the code to run longer than wall_clock_limit then
the number of points to be requested in the next iteration will be reduced by at least
min_decrease_factor. Default: 0. 9.

* decrease_to_percentage - float, optional; If remaining time =
decrease_to_percentage > time_for_next_iteration then the number of
points requested in the next refinement iteration will be reduced. Here: remaining_time
= wall_clock_limit - elapsed_time and time_for_next_iterationis
the estimated time required for the next refinement iteration. Note: if this condition is met
this means that the expected precision will not match the desired precision. Default: 0. 7.

* wall_clock_limit - float, optional; If the current elapsed time has passed
wall_clock limit and a refinement iteration finishes then a new refinement iteration will
not be started. Instead, the code will return the current result and exit. Default: DBL_MAX

(1.7976931348623158e+308).

* number_of_threads - int, optional; The number of threads used to compute integrals
concurrently. Note: The integrals themselves may also be computed with multiple threads
irrespective of this option. Default: 0.

* reset_cuda_after —int, optional; The cuda driver does not automatically remove un-
necessary functions from the device memory such that the device may run out of memory
after some time. This option controls after how many integrals cudaDeviceReset () is
called to clear the memory. With the default 0, cudaDeviceReset () is never called.
This option is ignored if compiled without cuda. Default: 0 (never).

* verbose - bool, optional; Controls the verbosity of the output of the amplitude. Default:
False.

* errormode — str, optional; Allowed values: abs, all, largest, real, imag. Defines
how epsrel and epsabs should be applied to complex values. With the choice largest,
the relative uncertainty is defined as max (|Re (error) |, |Im(error) |)/max (
|Re (result) |, |Im(result) |). Choosing all will apply epsrel and epsabs to

5.10. Integral Interface 91

pySecDec Documentation, Release 1.5.2

both the real and imaginary part separately. Note: If either the real or imaginary part in-
tegrate to 0, the choices all, real or imag might prevent the integration from stopping
since the requested precision epsrel cannot be reached. Default: abs.

See also:

A more detailed description of these parameters and how they affect timing/precision is given in
chapter_cpp_amplitude.

The call operator returns three strings: * The integral without its prefactor * The prefactor * The integral
multiplied by the prefactor

The integrator can be configured by calling the member methods use_Vegas (), use_Suave (),
use_Divonne (), use_Cuhre (), use_CQuad (), and use_Qmc (). The available options are listed in
the documentation of Vegas, Suave, Divonne, Cuhre, CQuad, Omc (CudaOmc for GPU version), re-
spectively. CQuad can only be used for one dimensional integrals. A call to use_CQuad () configures the
integrator to use CQuad if possible (1D) and the previously defined integrator otherwise. By default, COuad
(1D only) and Vegas are used with their default arguments. For details about the options, refer to the cuba and
the gsl manual.

Further information about the library is stored in the member variable info of type dict.

class pySecDec.integral_interface.MultiIntegrator (integral_library,

low_dim_integrator,
high_dim_integrator, critical_dim)
New in version 1.3.1.

Wrapper for the secdecutil: :MultiIntegrator.
Parameters

* integral_library — IntegralLibrary; The integral to be computed with this
integrator.

* low_dim_integrator - CPPIntegrator; The integrator to be used if the integrand
is lower dimensional than critical_dim.

* high_dim integrator — CPPIntegrator; The integrator to be used if the inte-
grand has dimension critical_dim or higher.

* critical_dim - integer; The dimension below which the low_dimensional_integrator
is used.

Use this class to switch between integrators based on the dimension of the integrand when integrating the
integral_ibrary. For example, “CQuad for 1D and Vegas otherwise” is implemented as:

integral_library.integrator = MultiIntegrator (integral_library,CQuad (integral_
—library),Vegas (integral_library), 2)

MultiIntegrator can be nested to implement multiple critical dimensions. To use e.g. CQOuad for 1D,
Cuhre for 2D and 3D, and Vega s otherwise, do:

integral_library.integrator = MultiIntegrator (integral_library,CQuad (integral_
—library),MultiIntegrator (integral_library,Cuhre (integral_library),
—Vegas (integral_library),4),2)

Warning: The integral_library passed to the integrators must be the same for all of them. Furthermore, an
integrator can only be used to integrate the integral_library it has beeen constructed with.

92

Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Warning: The MultiIntegrator cannot be used with CudaOme.

class pySecDec.integral_interface.Qme (integral_library, transform="korobov3’, fit-
function="default', generatingvectors='default’,
epsrel=0.01, epsabs=1e-07, maxe-

val=4611686018427387903, errormode="default',
evaluateminn=0, minn=10000, minm=0, maxnper-
package=0, maxmperpackage=0, cputhreads=None,
cudablocks=0, cudathreadsperblock=0, verbosity=0,
seed=0, devices=[])

Wrapper for the Qmc integrator defined in the integrators library.

Parameters

See also:

* integral_library - IntegralLibrary; The integral to be computed with this

integrator.

errormode - string; The errormode parameter of the Qmc, can be "default", "all",
and "largest". "default" takes the default from the Qmc library. See the Qmc docs
for details on the other settings.

transform - string; An integral transform related to the parameter P of the Qmec. The
possible choices correspond to the integral transforms of the underlying Qmc implementa-
tion. Possible values are, "none", "baker", sidi#, "korobov#", and korobov#x#
where any # (the rank of the Korobov/Sidi transform) must be an integer between 1 and 6.

fitfunction - string; An integral transform related to the parameter F of the Qmc. The
possible choices correspond to the integral transforms of the underlying Qmc implementa-
tion. Possible values are "default", "none", "polysingular".

generatingvectors — string; The name of a set of generating vectors. The possi-
ble choices correspond to the available generating vectors of the underlying Qmc imple-
mentation. Possible values are "default", "cbcpt_dnl_100", "cbcpt_dn2_6",
"cbept_cfftwl_6",and "cbcpt_cfftw2_10".

The "default" value will use all available generating vectors suitable for the highest
dimension integral appearing in the library.

cputhreads - int; The number of CPU threads that should be used to evaluate the inte-
grand function.

The default is the number of logical CPUs allocated to the current process (that is,
len(os.sched_getaffinity (0))) on platforms that expose this information (i.e.
Linux+glibc), or os . cpu_count ().

If GPUs are used, one additional CPU thread per device will be launched for communicating
with the device. One can set ~ cputhreads” to zero to disable CPU evaluation in this case.

The most important options are described in Section 4.6.2.

The other options are defined in the Qmc docs. If an argument is omitted then the default of the underlying Qmc
implementation is used.

class pySecDec.integral_interface.Suave (integral_library, epsrel=0.01, epsabs=1e-

07, flags=0, seed=0, mineval=10000, maxe-
val=4611686018427387903, zero_border=0.0,
nnew=1000, nmin=10, flatness=25.0,
real_complex_together=False)

5.10. Integral Interface

93

pySecDec Documentation, Release 1.5.2

Wrapper for the Suave integrator defined in the cuba library.

Parameters integral_library — IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in Section 4.6.3 and in the cuba manual.

class pySecDec.integral_interface.Vegas (integral_library, epsrel=0.01, epsabs=1e-
07, flags=0, seed=0, mineval=10000, maxe-
val=4611686018427387903, zero_border=0.0,
nstart=10000, nincrease=5000, nbatch=1000,

real_complex_together=False)
Wrapper for the Vegas integrator defined in the cuba library.

Parameters integral_library — IntegralLibrary; The integral to be computed with
this integrator.

The other options are defined in Section 4.6.3 and in the cuba manual.

pySecDec.integral_interface.series_to_ginac (series)
Convert a textual representation of a series into GiNaC format.

Parameters series (str) — Any of the series obtained by calling an TntegrallLibrary ob-
ject.

Returns

Two strings: the series of mean values, and the series of standard deviations. The format of each
returned value may look like this:

(0+0.012665+I) /eps + (0+0.028632+I) + Order (eps)

pySecDec.integral_interface.series_to_maple (series)
Convert a textual representation of a series into Maple format.

Parameters series (str) — Any of the series obtained by calling an TntegrallLibrary ob-
ject.

Returns

Two strings: the series of mean values, and the series of standard deviations. The format of each
returned value may look like this:

(0+0.012665xI) /eps + (0+0.028632+I) + O (eps)

pySecDec.integral_interface.series_to_mathematica (series)
Convert a textual representation of a series into Mathematica format.

Parameters series (str)— Any of the series obtained by calling an TntegrallLibrary ob-
ject.

Returns

Two strings: the series of mean values, and the series of standard deviations. The format of each
returned value may look like this:

(0+0.012665+I) /eps + (0+0.028632+I) + Oleps]

pySecDec.integral_interface.series_to_sympy (series)
Convert a textual representation of a series into SymPy format.

Parameters series (str) — Any of the series obtained by calling an TntegrallLibrary ob-
ject.

94 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Returns

Two strings: the series of mean values, and the series of standard deviations. The format of each
returned value may look like this:

’(O+0.012665*I)/eps + (0+0.028632+I) + O(eps)

5.11 Miscellaneous

Collection of general-purpose helper functions.

pySecDec.misc.adjugate (M)
Calculate the adjugate of a matrix.

Parameters M — a square-matrix-like array;

pySecDec.misc.all_pairs (iterable)
Return all possible pairs of a given set. all_pairs([1,2,3,4]) -—> [(1,2),(3,4)] [(1,3),
(2,4)1 [(1,4),(2,3)]

Parameters iterable - iterable; The set to be split into all possible pairs.

pySecDec.misc.argsort_2D_array (array)
Sort a 2D array according to its row entries. The idea is to bring identical rows together.

See also:

If your array is not two dimesional use argsort_ND_array ().

Example:
input sorted
123 123
234 123
123 234

Return the indices like numpy’s argsort () would.
Parameters array — 2D array; The array to be argsorted.

pySecDec.misc.argsort_ND_array (array)
Like argsort_2D _array (), this function groups identical entries in an array with any dimensionality
greater than (or equal to) two together.

Return the indices like numpy’s argsort () would.
See also:

argsort_2D_array ()
Parameters array — ND array, N >= 2; The array to be argsorted.

pySecDec.misc.assert_degree_at_most_max_degree (expression, variables, max_degree, er-

ror_message)
Assert that expression is a polynomial of degree less or equal max_degree in the variables.

5.11. Miscellaneous 95

pySecDec Documentation, Release 1.5.2

pySecDec.misc.cached_property (method)
Like the builtin property to be used as decorator but the method is only called once per instance.

Example:

class C(object) :
'Sum up the numbers from one to "N .'
def _ init__ (self, N):
self.N = N
@cached property
def sum(self):
result = 0
for i in range(l, self.N + 1):
result += 1
return result

pySecDec.misc.chunks (Ist, n)
Yield successive n-sized chunks from Ist.

Parameters
* 1st —list; The list from which to produce chunks.
* n —integer; The size of the chunks to produce.
Returns A list of at most length n.

pySecDec.misc.det (M)
Calculate the determinant of a matrix.

Parameters M — a square-matrix-like array;

pySecDec.misc.doc (docstring)
Decorator that replaces a function’s docstring with docstring.

Example:

@doc ('documentation of ~some_funcion ')
def some_function(xargs, =**kwargs):
pass

pySecDec.misc.flatten (polynomial, depth=inf)

Convert nested polynomials; i.e. polynomials that have polynomials in their coefficients to one single polyno-
mial.

Parameters

* polynomial — pySecDec.algebra.Polynomial; The polynomial to “flatten”.

* depth - integer; The maximum number of recursion steps. If not provided, stop if the
coefficient is not a pySecDec.algebra.Polynomial.

pySecDec.misc.lowest_order (expression, variable)
Find the lowest order of expression’s series expansion in variable.

Example:

>>> from pySecDec.misc import lowest_order
>>> lowest_order ('exp(eps)', 'eps')

0

>>> lowest_order ('gamma (eps) ', 'eps')

-1

96 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Parameters

* expression - string or sympy expression; The expression to compute the lowest expan-
sion order of.

* variable - string or sympy expression; The variable in which to expand.
pySecDec.misc.make_cpp_1list (python_list)
Convert a python list to a string to be used in c++ initializer list.
Example: ['a', 'b', 'C'] —_ '"a","b","C"'

pySecDec.misc.missing (full, part)
Return the elements in full that are not contained in part. Raise ValueError if an element is in part but
not in full. missing ([1,2,3], [1]) —-—> [2,3] missing([1,2,3,1], [1,2]) ——> [3,1]
missing([1,2,31, [1,'a'l) —-—> ValueError

Parameters
* full - iterable; The set of elements to complete part with.
* part —iterable; The set to be completed to a superset of full.

pySecDec.misc.parallel_det (M, pool)
Calculate the determinant of a matrix in parallel.

Parameters
* M- a square-matrix-like array;
* pool —multiprocessing.Pool; The pool to be used.

Example:

>>> from pySecDec.misc import parallel_det

>>> from multiprocessing import Pool

>>> from sympy import sympify

>>> M = [['mll', 'ml2', 'ml3"', 'm1l4"'],
['m21', 'm22', 'm23"', 'm24"'],
['m31', 'm32', 'm33"', 'm34"'],

.. ['m4l', 'm42', 'm43"', 'mé44"']]

>>> M = sympify (M)

>>> parallel_det (M, Pool(2)) # 2 processes

mllx (m22% (m33*m44 — m34+m43) — m23% (m32+m44 — m34+md2) + m24% (m32+m43 — m33+mé2))
—— ml2% (m21x (m33*m44 — m34xm43) — m23x (m31*m44 — m34xm4l) + m24x (m31*md43 —
—m33+m4l)) + ml3%x (m21x (m32xm44 — m34xm42) - m22x (m31xm44 — m34xmé4l) +_,

—m24% (m31*m42 — m32+mdl)) — mldx (m21x (m32+*m43 — m33xm42) - m22x (m31*m43 —

—m33*m4l) + m23x (m31*m42 - m32+*m4dl))

pySecDec.misc.powerset (iterable, min_length=0, stride=1)
Return an iterator over the powerset of a given set. powerset ([1,2,3]1) ——> () (1,) (2,) (3,)
(L,2) (1,3) (2,3) (1,2,3)

Parameters
* iterable —iterable; The set to generate the powerset for.

* min_length - integer, optional; Only generate sets with minimal given length. Default:
0.

* stride - integer; Only generate sets that have a multiple of stride elements.
powerset ([1,2,3], stride=2) --> () (1,2) (1,3) (2,3)

5.11. Miscellaneous 97

pySecDec Documentation, Release 1.5.2

pySecDec.misc.rangecomb (low, high)
Return an iterator over the occuring orders in a multivariate series expansion between low and high.

Parameters
* low — vector-like array; The lowest orders.

* high - vector-like array; The highest orders.

Example:

>>> from pySecDec.misc import rangecomb

>>> all_orders = rangecomb ([-1,-2], [0,0])

>>> list (all_orders)

[(-1, -2, (-1, -1), (-1, 0), (O, -2), (0, -1), (0, 0)]

pySecDec.misc.rec_subs (expr, repl, n=200)
Substitute repl in expr and expand until expr stops changing or depth n is reached.

Parameters
* expr — sympy expression; Expression to which the replacement rules are applied.
* repl - list; List of replacement rules.
* n —integer; Maximal number of repl applications.

Returns Expression after substitutions.

pySecDec.misc.sympify expression (a)
A helper function for converting objects to sympy expressions.

First try to convert object to a sympy expression, if this fails, then try to convert str(object) to a sympy expression

Parameters a —

The object to be converted to a sympy expression.
Returns

A sympy expression representing the object.

pySecDec.misc.sympify symbols (iterable, error_message, allow_number=False)
sympify each item in iterable and assert that it is a symbol.

This module provides a make_package like interface to code_writer.sum_package make_sum_package ().

pySecDec.make_package .make_package (name, integration_variables, regulators, requested_orders,

polynomials_to_decompose, polynomial_names=[],
other_polynomials=[], prefactor=1, remain-
der_expression=1, functions=[], real_parameters=[],
complex_parameters=[], Sform_optimization_level=2,
form_work_space="50M', form_memory_use=None,
form_threads=2, form_insertion_depth=35,
contour_deformation_polynomial=None,

positive_polynomials=[], decomposi-
tion_method="iterative_no_primary’', nor-
maliz_executable="normaliz’, enforce_complex=False,
split=False, ibp_power_goal=- 1,
use_iterative_sort=True, use_light_Pak=True,
use_dreadnaut="Fualse, use_Pak=True, pro-
cesses=None, form_executable=None,

pylink_gmc_transforms=["korobov3x3'])
Decompose, subtract and expand an expression. Return it as c++ package.

98 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

See also:

In order to decompose a loop integral, use the function pySecDec. loop_integral.loop_package ().

See also:

The generated library is described in Generated C++ Libraries.

See also:

pySecDec.code_writer.make_ package ()

Parameters

name — string; The name of the c++ namepace and the output directory.

integration_variables - iterable of strings or sympy symbols; The variables that
are to be integrated. The intgration region depends on the chosen decomposition_method.

regulators —iterable of strings or sympy symbols; The UV/IR regulators of the integral.

requested_orders — iterable of integers; Compute the expansion in the regulators to
these orders.

polynomials_to_decompose - iterable of strings or sympy expressions or
pySecDec.algebra.ExponentiatedPolynomial or pySecDec.algebra.
Polynomial; The polynomials to be decomposed.

polynomial_ names - iterable of strings; Assign symbols for the polyno-
mials_to_decompose. These can be referenced in the other_polynomials; see
other_polynomials for details.

other_polynomials - iterable of strings or sympy expressions or pySecDec.
algebra.ExponentiatedPolynomial or pySecDec.algebra.Polynomial;
Additional polynomials where no decomposition is attempted. The symbols defined in poly-
nomial_names can be used to reference the polynomials_to_decompose. This is particularly
useful when computing loop integrals where the “numerator” can depend on the first and
second Symanzik polynomials.

Example (1-loop bubble with numerator):

>>> polynomials_to_decompose ["(x0 + x1)+*x(2xeps — 4)",
"(—px*2xx0%x1) x* (-eps)) "]

>>> polynomial_names = ["U", "F"]

>>> other_polynomials = [""" (eps — 1) *s*xUx%x2
+ (eps - 2)«*F
- (eps — 1) *2xsxx0%U
+ (eps — 1) *xs*x0xx2"""]

See also:
pySecDec.loop_integral

Note that the polynomial_names refer to the polynomials_to_decompose without their ex-
ponents.

prefactor — string or sympy expression, optional; A factor that does not depend on the
integration variables.

remainder_expression - string or sympy expression or pySecDec.algebra.
_Expression, optional; An additional factor.

5.11. Miscellaneous

99

pySecDec Documentation, Release 1.5.2

Dummy function must be provided with all arguments, e.g.
remainder_expression='exp (eps) *xf (x0,x1)". In addition, all dummy
function must be listed in functions.

» functions - iterable of strings or sympy symbols, optional; Function symbols occuring
in remainder_expression, e.g.” [‘f’]".

Note: Only user-defined functions that are provided as c++-callable code should be men-
tioned here. Listing basic mathematical functions (e.g. log, pow, exp, sqrt, ...) is not
required and considered an error to avoid name conflicts.

Note: The power function pow and the logarithm log use the nonstandard continuation
with an infinitesimal negative imaginary part on the negative real axis (e.g. log (-1) =

—-ixpi).

* real_parameters — iterable of strings or sympy symbols, optional; Symbols to be in-
terpreted as real variables.

complex parameters — iterable of strings or sympy symbols, optional; Symbols to be
interpreted as complex variables.

form_optimization_level - integer out of the interval [0,4], optional; The opti-
mization level to be used in FORM. Default: 2.

* form work_space - string, optional; The FORM WorkSpace. Default: ' 500M"'.

Setting this to smaller values will reduce FORM memory usage (without affecting perfor-
mance), but each problem has some minimum value below which FORM will refuse to
work: it will fail with error message indicating that larger WorkSpace is needed, at which
point WorkSpace will be adjusted and FORM will be re-run.

* form_memory_use - string, optional; The target FORM memory usage. When specified,
form.set parameters will be adjusted so that FORM uses at most approximately this much
resident memory.

The minimum is approximately to 600M + 350M per worker thread if form_work_space
is leftat ' 50M". if form_work_space is increased to ' 500M "', then the minimum is 2.5G +
2.5G per worker thread. Default: None, meaning use the default FORM values.

* form_threads - integer, optional; Number of threads (T)FORM will use. Default: 2.

* form_insertion_depth — nonnegative integer, optional; How deep FORM should try
to resolve nested function calls. Default: 5.

* contour_deformation_polynomial — string or sympy symbol, optional; The name
of the polynomial in polynomial_names that is to be continued to the complex plane accord-
ing to a —id prescription. For loop integrals, this is the second Symanzik polynomial F. If
not provided, no code for contour deformation is created.

* positive_polynomials — iterable of strings or sympy symbols, optional; The names
of the polynomials in polynomial_names that should always have a positive real part. For
loop integrals, this applies to the first Symanzik polynomial U. If not provided, no polyno-
mial is checked for positiveness. If contour_deformation_polynomial is None, this param-
eter is ignored.

decomposition_method - string, optional; The strategy to decompose the polynomi-
als. The following strategies are available:

100 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

“iterative_no_primary’ (default): integration region [0, 1]V.

— ’geometric_no_primary’: integration region [0, 1]V.

— ’geometric_infinity_no_primary’: integration region [0, oo]".

— ’iterative’: primary decomposition followed by integration over [0, 1]V 1.
- ’geometric’: x is set to one followed by integration over [0, oo]¥ 1.

— ’geometric_ku’: primary decomposition followed by integration over [0, 1]V 1,

“iterative’, ‘geometric’, and ‘geometric_ku’ are only valid for loop integrals. An
end user should use ‘iterative_no_primary’, ‘geometric_no_primary’, or ‘geomet-
ric_infinity_no_primary’ here. In order to compute loop integrals, please use the function
pySecDec. loop_integral.loop_package().

* normaliz_executable - string, optional; The command to run normaliz. normaliz is
only required if decomposition_method starts with ‘geometric’. Default: ‘normaliz’

* enforce_complex — bool, optional; Whether or not the generated integrand functions
should have a complex return type even though they might be purely real. The return type
of the integrands is automatically complex if contour_deformation is True or if there are
complex_parameters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if 1og (<negative real>) occursinone of the integrand
functions. However, pySecDec will suggest setting this flag to True in that case. Default:
False

* split - bool or integer, optional; Whether or not to split the integration domain in order
to map singularities from 1 to 0. Set this option to True if you have singularties when one
or more integration variables are one. If an integer is passed, that integer is used as seed to
generate the splitting point. Default: False

* ibp_power_goal — number or iterable of number, optional; The power_goal that is for-
warded to integrate by parts().

This option controls how the subtraction terms are generated. Setting it to —numpy.inf
disables integrate by _parts (), while 0 disables integrate_pole_part ().

See also:

To generate the subtraction terms, this function first calls integrate by parts ()
for each integration variable with the give ibp_power_goal. Then
integrate_pole part () is called.

Default: -1

e use_iterative_sort - bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with iterative_ sort ()
to find sector symmetries. Default: True

* use_light_Pak — bool; Whether or not to use
squash_symmetry_ redundant_sectors_sort () with l1ight_Pak_sort ()
to find sector symmetries. Default: True

* use_dreadnaut - bool or string, optional; Whether or not to use
squash_symmetry_ redundant_sectors_dreadnaut () to find sector symme-
tries. If given a string, interpret that string as the command line executable dreadnaut.
If True, try $SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable
SSECDEC_CONTRIB is not set, dreadnaut. Default: False

e use_Pak —bool; Whether or not touse squash_symmetry redundant_sectors_sort ()
with Pak_sort () to find sector symmetries. Default: True

5.11. Miscellaneous 101

pySecDec Documentation, Release 1.5.2

* processes — integer or None, optional; The maximal number of processes to be used.
If None, the number of CPUs multiprocessing.cpu_count () is used. New in
version 1.3. Default: None

* form executable - string or None, optional; The path to the form exectuable. The
argument is passed to Coefficient.process (). If None, then either $FORM,
$SECDEC_CONTRIB/bin/form, or just form is used, depending on which environ-
ment variable is set. Default: None.

* pylink gmc_transforms — list or None, optional; Required qmc integral transforms,
options are:

— korobov<i>x<ij>forl<=1ij<=6
— korobov<i> for 1 <=i<=6 (same as korobov<i>x<i>)
- sidi<i>forl<=i<=6

New in version 1.5. Default: ['korobov3x3']

5.12 Expansion by Regions

Routines to perform an expansion by regions, see e.g. [PS11].

pySecDec.make_regions.apply_region (polynomials, region_vector, expansion_parameter_index)
Apply the region_vector to the input polynomials.

Note: Redefines the expansion_parameter as p — p™, where n is given by the region_vector.

Note: apply_region modifies the input polynomials.

Parameters
* polynomials —iterable of polynomials; Polynomials to be computed in different regions.

* region_vector - vector-like array; Region specified by the power of the expan-
sion_parameter in the rescaled variables. The region vectors have to be specified in the
same order as the symbols are specified in the polynomials. E.g. if symbols are specified
as [‘x0’,x1’,’rho’] and want rescaling x0 -> rho” * x0, x1 -> rho”k * x1 and rho -> rho”n,
then the region vector needs to be [i,k,n]

* expansion_parameter_ index —integer; Index of the expansion parameter in the list
of symbols.

pySecDec.make_regions.derive_prod (poly_list, numerator, index, polynomial_name_indices)
Calculates the derivative of a product of polynomials using

88(Ei HPJ%N :HPqulN/
J J

where N’ is given by

> Ne 2 v + (H)
J k#j

Z ON 0Py 8]\7
aPk 81171 81‘1 ’

102 Chapter 5. Reference Guide

pySecDec Documentation, Release 1.5.2

Parameters

* poly list —list of ExponentiatedPolynomial; The exponentiated polynomials
that should be differentiated. They need to be defined in terms of the symbols x0, x1, x2, .
.and p0,pl, p2.. where p0, pl,p2. . are the bases of the exponentiated polynomials.

* numerator — Polynomial; The numerator also defined as an exponentiated polynomial
with symbols = [x0,x1,...,p0,pl,...].

* index - integer; Index of variable with respect to which the derivative is taken.

* polynomial name indices - iterable; Indices of polynomial names in
poly_symbols.

pySecDec.make_regions.expand_region (poly_list, numerator, index, order, polyno-

mial_name_indices)
Expands the product of the polynomials in poly_list and the numerator with respect to the variable whose index

is given to a desired order specified by order.
Parameters

* poly list - list of ExponentiatedPolynomial; The exponentiated polynomials
that should be expanded. They need to be defined in terms of the symbols x0, x1, x2, . .
and pO, pl, p2.. where p0, pl, p2. . are the bases of the exponentiated polynomials.

* numerator — Polynomial; The numerator also defined as an exponentiated polynomial
with symbols = [x0,x1,...,p0,pl,...].

* index - integer; Index of variable with respect to which the polynomials are expanded.
* order - integer; Desired order of expansion.

* polynomial_name_indices —list of int; Indices of polynomials in the symbols of the
input polynomials.

pySecDec.make_regions.find regions (exp_param_index, polynomial, indices=None, nor-
maliz="normaliz’', workdir="normaliz_tmp")
Find regions for the expansion by regions as described in [PS11].

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz
for installation and a list of tested versions.

Parameters
* exp_param_index - int; The index of the expansion parameter in the expolist.
* polynomials — an instance of Polynomial, for which to calculate the regions for.

* indices - list of integers or None; The indices of the parameters to be included in the
asymptotic expansion. This should include all Feynman parameters (integration variables)
and the expansion parameter. By default (1ndices=None), all parameters are considered.

* normaliz - string; The shell command to run normaliz.

* workdir — string; The directory for the communication with normaliz. A directory with
the specified name will be created in the current working directory. If the specified directory
name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

5.12. Expansion by Regions 103

pySecDec Documentation, Release 1.5.2

pySecDec.make_regions.make_regions (name, integration_variables, regulators, requested_orders,
smallness_parameter, polynomials_to_decompose, ex-
pansion_by_regions_order=0, real_parameters=[],
complex_parameters=[], normaliz="normaliz’, poly-
tope_from_sum_of=None, **make_package_args)
Applies the expansion by regions method (see e.g. [PS11]) to a list of polynomials.

Parameters
* name - string; The name of the c++ namepace and the output directory.

* integration_variables - iterable of strings or sympy symbols; The variables that
are to be integrated from O to 1.

* regulators — iterable of strings or sympy symbols; The regulators of the integral.

* requested_orders - iterable of integers; Compute the expansion in the regulators to
these orders.

* smallness_parameter — string or sympy symbol; The symbol of the variable in which
the expression is expanded.

* polynomials_to_decompose - iterable of strings or sympy expressions or
pySecDec.algebra.ExponentiatedPolynomial or pySecDec.algebra.
Polynomial; The polynomials to be decomposed.

* expansion_by_ regions_order — integer; The order up to which the expression is
expanded in the smallness_parameter. Default: 0

* real parameters - iterable of strings or sympy symbols, optional; Symbols to be in-
terpreted as real variables.

* complex_parameters — iterable of strings or sympy symbols, optional; Symbols to be
interpreted as complex variables.

* normaliz - string; The shell command to run normaliz. Default: ‘normaliz’

* polytope_from_sum_of — iterable of integers; If this value is None, the product of all
the polynomials polynomials_to_decompose is used to determine the Newton polytope and
the normal vectors to it. Otherwise, the sum of the polynomials with the indices given by
this parameter are used.

* make_package_args - The arguments to be forwarded to pySecDec.
code_writer.make_package().

104 Chapter 5. Reference Guide

CHAPTER
SIX

FREQUENTLY ASKED QUESTIONS

6.1 How can | adjust the integrator parameters?

If the python interface is used for the numerical integration, i.e. a python script like examples/
integrate_box1L.py, the integration parameters can be specified in the argument list of the integrator call.
For example, using Vegas as integrator:

boxlL.use_Vegas (flags=2, epsrel=le-3, epsabs=le-12, nstart=5000, nincrease=10000,
—maxeval=10000000, real_complex_together=True)

Or, using Divonne as integrator:

box1lL.use_Divonne (flags=2, epsrel=le-3, epsabs=le-12, maxeval=10000000, border=le-8,
—~real complex together=True)

The parameter real complex together tells the integrator to integrate real and imaginary parts simultaneously. A
complete list of possible options for the integrators can be found in integral interface.

If the C++ interface is used, the options can be specified as fields of the integrator. For example, after running
examples/generate_boxlL.py,inthefile examples/box1L/integrate_box1L. cpp, you can modify
the corresponding block to e.g.:

// Integrate
secdecutil::cuba::Vegas<boxlL::integrand_return_t> integrator;

integrator.flags = 2; // verbose output —-> see cuba manual
integrator.epsrel = le-2;

integrator.epsabs = le-12;

integrator.nstart = 5000;

integrator.nincrease = 10000;

integrator.maxeval = 10000000;
integrator.together

true;

In order to set the Divonne integrator with the same parameters as above, do:

// Integrate
secdecutil::cuba::Divonne<boxlL: :integrand_return_t> integrator;

integrator.flags = 2; // verbose output —--> see cuba manual
integrator.epsrel = le-2;

integrator.epsabs = le-12;

integrator.maxeval = 10000000;

integrator.border = 1e-8;

integrator.together = true;

More information about the C++ integrator class can be found in Section 4.6.

105

pySecDec Documentation, Release 1.5.2

6.2 How can | request a higher numerical accuracy?

The integrator stops if any of the following conditions is fulfilled: (1) epsrel is reached, (2) epsabs is reached,
(3) maxeval is reached. Therefore, setting these parameters accordingly will cause the integrator to make more
iterations and reach a more accurate result.

6.3 What can | do if the integration takes very long?

For most integrals, the best performance will be achieved using the QMC integrator and we recommend switching to it,
if not already used. If changing the integrator doesn’t improve the runtime, it is possible that the integrator parameters
should be adjusted, as described in the previous sections. In particular for integrals with spurious poles, the parameter
epsabs should be increased, since it is the only relevant stopping criterion in this case, besides maxeval.

6.4 How can | tune the contour deformation parameters?

You can specify the parameters in the argument of the integral call in the python script for the integration, see e.g. line
12 of examples/integrate boxlL.py:

str_integral_without_prefactor, str_prefactor, str_integral with_prefactor=boxlL(real_
—parameters=[4.,-0.75,1.25,1.],number_of_presamples=10+%6,deformation_parameters_
—maximum=0.5)

This sets the number of presampling points to 10x*6 (default: 10x%5) and the maximum value for the contour
deformation parameter deformation_parameters_maximumto 0.5 (default: 1). The user should make sure
that deformation parameters maximum is always larger than deformation_parameters_minimum (default: le-5).
These parameters are described in TntegrallLibrary.

6.5 What can | do if the program stops with an error message con-
taining sign_check_error?

This error occurs if the contour deformation leads to a wrong sign of the Feynman 4 prescription, usually due to the
fact that the deformation parameter) is too large. If this error is encountered the program will automatically reduce
A and re-attempt integration. If the code continues after the error and eventually returns a result then it successfully
adjusted the contour and the error can be ignored. To avoid this error in the first place choose a larger value for
number_of_presamples and a smaller value (e.g. 0.5) for deformation_parameters_maximum (see
item above). If that does not help, you can try 0.1 instead of 0.5 for deformation_parameters_maximum.
The relevant parameters are described in Tntegrallibrary.

If the code fails to find a contour it may display the error message A1l deformation parameters
at minimum already, integral still fails and stop. In this case try reducing
deformation_parameters_maximum (default: 1e-5) to a smaller number. If the code still fails to find
a valid contour it may be that your integral has an unavoidable end-point singularity or other numerical problems.
Often this error is encountered when the real_parameters and/or complex_parameters are very large/small
or if some of the parameters differ from each other by orders of magnitude. If all of the real_parameters or
complex_parameters are of a similar size (but not O(1)) then dividing each parameter by e.g. the largest param-
eter (such that all parameters are (1)) can help to avoid a situation where extremely small deformation parameters
are required to obtain a valid contour. It may then be possible to restore the desired result using dimensional analysis
(i.e. multiplying the result by some power of the largest parameter).

106 Chapter 6. Frequently Asked Questions

pySecDec Documentation, Release 1.5.2

If you still encounter an error after following these suggestions, please open an issue.

6.6 What does additional_prefactor mean exactly?

We should first point out that the conventions for additional prefactors defined by the user have been changed between
SecDec 3 and pySecDec. The prefactor specified by the user will now be included in the numerical result.

To make clear what is meant by “additional”, we repeat our conventions for Feynman integrals here.

A scalar Feynman graph G in D dimensions at L loops with /N propagators, where the propagators can have arbitrary,
not necessarily integer powers v;, has the following representation in momentum space:

/HdDHl !)
I 7 () (ph)

p. " 5 _ _
APk = —5- d"ki, Pj({k}, {p},m3) = (¢} — m} +id) ,

17 2

where the g; are linear combinations of external momenta p; and loop momenta £;.

Introducing Feynman parameters leads to:

YNv—(L+1)D/2

(N, — LD/2) "
N,]
G=(-1) / le T FN.-LD/2

H] 1 Dvy)

N

0

The prefactor (—1)N» T'(N, — LD/2)/ H;V:1 I'(v;) coming from the Feynman parametrisation will always be in-
cluded in the numerical result, corresponding to additional_prefactor=1 (default), i.e. the program will return the
numerical value for G. If the user defines additional_prefactor="gamma(3-2*eps)’, this prefactor will be expanded
in € and included in the numerical result returned by pySecDec, in addition to the one coming from the Feynman
parametrisation.

For general polynomials not related to loop integrals, i.e. in make_package, the prefactor provided by the user is
the only prefactor, as there is no prefactor coming from a Feynman parametrisation in this case. This is the reason why
in make_package the keyword for the prefactor defined by the user is prefactor, while in 1oop_package it
isadditional_prefactor.

6.7 What can | do if | get nan?

This means that the integral does not converge which can have several reasons. When Divonne is used as an integrator,
it is important to use a non-zero value for border, e.g. border=1e-8. Vegas is in general the most robust integrator.
When using Vegas, try to increase the values for nstart and nincrease, for example nstart=100000 (default:
10000) and nincrease=50000 (default: 5000).

If the integral is non-Euclidean, make sure that contour_deformation=True is set. Another reason for getting nan can
be that the integral has singularities at z; = 1 and therefore needs usage of the split option, see item below.

6.6. What does additional_prefactor mean exactly? 107

pySecDec Documentation, Release 1.5.2

6.8 What can | use as numerator of a loop integral?

The numerator must be a sum of products of numbers, scalar products (e.g. pl (mu) k1 (mu) *pl (nu) *k2 (nu)
and/or symbols (e.g. m). The numerator can also be an inverse propagator. In addition, the numerator must be finite in
the limit € — 0. The default numerator is 1.

Examples:

pl (mu) xk1l (mu) *pl (nu) k2 (nu) + 4xsxeps*kl (mu) xkl (mu)
pl (mu) » (k1 (mu) + k2 (mu))*pl (nu)«k2 (nu)
pl (mu) xk1 (mu)

More details can be found in LoopTIntegral FromPropagators.

6.9 How can |l integrate just one coefficient of a particular order in the
regulator?

You can pick a certain order in the C++ interface (see C++ Interface (advanced)). To integrate only one order, for
example the finite part, change the line:

const boxlL::nested_series_t<secdecutil::UncorrelatedDeviation<boxlL::integrand_

—return_t>> result_all = secdecutil::deep_apply(all_sectors, integrator.integrate);
to:
int order = 0; // compute finite part only

const secdecutil::UncorrelatedDeviation<boxlL::integrand_return_t> result_order =
—secdecutil: :deep_apply(all_sectors.at (order), integrator.integrate);

[

where box 1L is to be replaced by the name of your integral. In addition, you should change the lines:

std::cout << "-- integral without prefactor —-—- " << std::endl;
std::cout << result_all << std::endl << std::endl;

to:

std::cout << "-- integral without prefactor —-- " << std::endl;
std::cout << result_order << std::endl << std::endl;

and remove the lines:

std::cout << "-- prefactor —-- " << std::endl;

const boxl1lL::nested_series_t<boxlL::integrand_return_t> prefactor =
—box1lL::prefactor (real_parameters, complex_parameters);

std::cout << prefactor << std::endl << std::endl;

std::cout << "-- full result (prefactorxintegral) -- " << std::endl;
std::cout << prefactorxresult_all << std::endl;

because the expansion of the prefactor will in general mix with the pole coefficients and thus affect the finite part. We
should point out however that deleting these lines also means that the result will not contain any prefactor, not even
the one coming from the Feynman parametrisation.

108 Chapter 6. Frequently Asked Questions

pySecDec Documentation, Release 1.5.2

6.10 How can | use complex masses?

In the python script generating the expressions for the integral, define mass symbols in the same way as for real masses,
e.g:

Mandelstam_symbols=["'s"]
mass_symbols=['msq'"]

Then, in 1oop_package define:

real parameters = Mandelstam_symbols,
complex parameters = mass_symbols,

In the integration script (using the python interface), the numerical values for the complex parameters are given after
the ones for the real parameters:

str_integral_without_prefactor, str_prefactor, str_integral_with_prefactor =
—integral (real_parameters=[4.],complex_parameters=[1.-0.00387])

Note that in python the letter j is used rather than i for the imaginary part.

In the C++ interface, you can set (for the example triangle2L):

const std::vector<triangle2L::real_t> real_parameters = { 4. };
const std::vector<triangle2L::complex_t> complex_parameters = { {1.,0.0038} };

6.11 When should | use the “split” option?

The modules 1oop_package and make_package have the option to split the integration domain (split=True).
This option can be useful for integrals which do not have a Euclidean region. If certain kinematic conditions are
fulfilled, for example if the integral contains massive on-shell lines, it can happen that singularities at ; = 1 remain in
the F polynomial after the decomposition. The split option remaps these singularities to the origin of parameter space.
If your integral is of this type, and with the standard approach the numerical integration does not seem to converge,
try the split option. It produces a lot more sectors, so it should not be used without need. We also would like to
mention that very often a change of basis to increase the (negative) power of the F polynomial can be beneficial if
integrals of this type occur in the calculation.

6.12 How can | obtain results from pySecDec in a format convenient
for GiNaC/ Sympy/ Mathematica/ Maple?

If you are using the python interface, you can use the functions series_to_ginac, series_to_sympy,
series_to_mathematica, series_to_maple to convert the output of the integral library.

Example:

#!/usr/bin/env python3

from pySecDec.integral_interface import Integrallibrary

from pySecDec.integral_interface import series_to_ginac, series_to_sympy, series_to_
—mathematica, series_to_maple

if name == "__main__ ":

(continues on next page)

6.10. How can | use complex masses? 109

pySecDec Documentation, Release 1.5.2

(continued from previous page)

load c++ library
easy = Integrallibrary('easy/easy_pylink.so')

integrate
_, _, result = easy/()

print result

print (series_to_ginac (result))

print (series_to_sympy (result))

print (series_to_mathematica (result))
print (series_to_maple (result))

Outputs:

(' (1+0%I)/eps + (0.306852819440052549+0%I) + Order (eps)', '(5.41537065611170534e~
—17+0%I)/eps + (1.3864926114078559e-15+0xI) + Order (eps) ')

(' (1+0%I)/eps + (0.306852819440052549+0+I) + O(eps)', '(5.41537065611170534e-17+0+1)/
—eps + (1.3864926114078559e-15+0%I) + O(eps) ")

(' (1+0%I)/eps + (0.306852819440052549+0xI) + Ol[eps]', '(5.41537065611170534%10"~
—17+0%I)/eps + (1.3864926114078559%10"-15+0+I) + Of[eps]"')

(' (1+0%I)/eps + (0.306852819440052549+0%I) + O(eps)', '(5.41537065611170534e-17+0%1)/
—eps + (1.3864926114078559e-15+0%I) + O(eps) ")

6.13 Expansion by regions: what does the parameter z mean?

When expansion by regions via the “rescaling with z-method” is used, the parameter z acts as expansion parameter
in the Taylor expansion of the integrand. After the code generation step, in the numerical integration, z=1 needs to
be used and the kinematic invariants have to be set to the same values as would be used with the t-method, i.e. the
kinematic values desired by the user.

6.14 Expansion by regions: why does the t-method not converge?

With the t-method, configurations can occur for particular kinematic points which, after sector decomposition, lead to
a pole at the upper integration boundary, where the contour deformation vanishes and therefore cannot regulate this
pole. In such a case the z-method should be used, because it does not transform the Feynman parameters in a way
which can induce such a configuration.

110 Chapter 6. Frequently Asked Questions

CHAPTER
SEVEN

REFERENCES

111

pySecDec Documentation, Release 1.5.2

112 Chapter 7. References

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
¢ modindex

¢ search

113

pySecDec Documentation, Release 1.5.2

114 Chapter 8. Indices and tables

[BHOO]

[BHJ+15]

[BIR]

[BIS16]

[Borl4]

BIBLIOGRAPHY

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals,
Nucl. Phys. B 585 (2000) 741,

doi:10.1016/S0550-3213(00)00429-6,
arXiv:hep-ph/0004013

S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-3.0: numerical evaluation
of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm.196,

doi:10.1016/j.cpc.2015.05.022,
arXiv:1502.06595

W. Bruns and B. Ichim and T. Romer and R. Sieg and C. Soger, Normaliz. Algorithms for rational cones
and affine monoids,

available at https://www.normaliz.uni-osnabrueck.de

W. Bruns, B. Ichim, C. Soger, The power of pyramid decomposition in Normaliz, 2016, J.Symb.Comp.74,
513-536,

doi:10.1016/j.js¢.2015.09.003,
arXiv:1206.1916

S. Borowka, Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications,
2014, PhD Thesis - Technische Universitat Miinchen

mediaTUM:1220360,
arXiv:1410.7939

[GKR+11] J. Gluza, K. Kajda, T. Riemann, V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in

[GSL]

[HahO5]

[Hah16]

Euclidean Kinematics, 2011, Eur.Phys.J.C71,
doi:10.1140/epjc/s10052-010-1516-y,
arXiv:1010.1667

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific
Library Reference Manual - Third Edition, 2009, Network Theory Ltd.,

ISBN: 0-9546120-7-8 (ISBN-13: 978-0-9546120-7-8),
available at http://www.gnu.org/software/gsl/

T. Hahn, CUBA: A Library for multidimensional numerical integration, 2005, Comput.Phys.Comm.168,
78-95,

doi:10.1016/j.cpc.2005.01.010,

arXiv:hep-ph/0404043

T. Hahn, Concurrent Cuba, 2016, Comput.Phys.Comm.207, 341-349,
doi:10.1016/j.cpc.2016.05.012,

115

http://dx.doi.org/10.1016/S0550-3213(00)00429-6
http://arxiv.org/abs/hep-ph/0004013
http://dx.doi.org/10.1016/j.cpc.2015.05.022
http://arxiv.org/abs/1502.06595
https://www.normaliz.uni-osnabrueck.de
http://doi.org/10.1016/j.jsc.2015.09.003
http://arxiv.org/abs/1206.1916
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20140709-1220360-0-4
http://arxiv.org/abs/1410.7939
http://dx.doi.org/10.1140/epjc/s10052-010-1516-y
http://arxiv.org/abs/1010.1667
http://www.gnu.org/software/gsl/
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://dx.doi.org/10.1016/j.cpc.2016.05.012

pySecDec Documentation, Release 1.5.2

arXiv:1408.6373

[Hei08] G. Heinrich, Sector Decomposition, 2008, Int.J.Mod.Phys.A23,
doi:10.1142/S0217751X08040263,
arXiv:0803.4177

[KU10] T. Kaneko and T. Ueda, A Geometric method of sector decomposition, 2010, Comput.Phys.Comm.181,
doi:10.1016/j.cpc.2010.04.001,
arXiv:0908.2897

[KUV13] J. Kuipers, T. Ueda, J. A. M. Vermaseren, Code Optimization in FORM, 2015, Comput.Phys.Comm.189,
1-19,
doi:10.1016/j.cpc.2014.08.008,
arXiv:1310.7007

[LWY+15] Z. Li, J. Wang, Q.-S. Yan, X. Zhao, Efficient Numerical Evaluation of Feynman Integrals, 2016,
Chin.Phys.C40 No. 3, 033103,

doi:10.1088/1674-1137/40/3/033103,
arXiv:1508.02512

[MP+14] B.D. McKay and A. Piperno, Practical graph isomorphism, 11, 2014, Journal of Symbolic Computation,
60, 94-112,
doi:10.1016/j.jsc.2013.09.003
arXiv:1301.1493

[Pak11] A.Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques,
2012, J. Phys.: Conf. Ser. 368 012049,

doi:10.1088/1742-6596/368/1/012049,
arXiv:1111.0868

[PS11] A. Pak, A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, 2011,
Eur.Phys.J.C 71, 1626,

doi:10.1140/epjc/s10052-011-1626-1,
arXiv:1011.4863

[PSD17] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, pySecDec: A toolbox for
the numerical evaluation of multi-scale integrals, Comput.Phys.Comm. 222 (2018),

doi:10.1016/j.cpc.2017.09.015,
arXiv:1703.09692

[PSD18] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, A GPU compatible quasi-Monte
Carlo integrator interfaced to pySecDec, Comput.Phys.Commun. 240 (2019),

doi:10.1016/j.cpc.2019.02.015,
arXiv:1811.11720

[PSD21] G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V Magerya, A Poldaru, J. Schlenk, E. Villa
Expansion by regions with pySecDec,
(to appear)

[RUV17] B.Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2,
arXiv:1707.06453

[VerO0] J. A. M. Vermaseren, New features of FORM,
arXiv:math-ph/0010025

[Mis18] G. Mishima, High-Energy Expansion of Two-Loop Massive Four-Point Diagrams
doi:10.1007/JHEP02(2019)080,

116 Bibliography

http://arxiv.org/abs/1408.6373
http://dx.doi.org/10.1142/S0217751X08040263
http://arxiv.org/abs/0803.4177
http://dx.doi.org/10.1016/j.cpc.2010.04.001
http://arxiv.org/abs/0908.2897
http://dx.doi.org/10.1016/j.cpc.2014.08.008
http://arxiv.org/abs/1310.7007
http://dx.doi.org/10.1088/1674-1137/40/3/033103
http://arxiv.org/abs/1508.02512
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://arxiv.org/abs/1301.1493
http://dx.doi.org/10.1088/1742-6596/368/1/012049
http://arxiv.org/abs/1111.0868
http://dx.doi.org/10.1140/epjc/s10052-011-1626-1
http://arxiv.org/abs/1011.4863
http://dx.doi.org/10.1016/j.cpc.2017.09.015
http://arxiv.org/abs/1703.09692
http://dx.doi.org/10.1016/j.cpc.2019.02.015
http://arxiv.org/abs/1811.11720
http://arxiv.org/abs/1707.06453
http://arxiv.org/abs/math-ph/0010025
https://doi.org/10.1007/JHEP02(2019)080

pySecDec Documentation, Release 1.5.2

arXiv:1812.04373

Bibliography 117

https://arxiv.org/abs/1812.04373

pySecDec Documentation, Release 1.5.2

118 Bibliography

a

pySecDec.

C

pySecDec.
pySecDec.
pySecDec.

81

d

pySecDec.
pySecDec.
pySecDec.
pySecDec.

e

pySecDec.

pySecDec.

pySecDec.

m
pySecDec

pySecDec

P

pySecDec.

S

pySecDec.

algebra, 47

code_writer, 76
code_writer.sum_package, 80

code_writer.template_parser,

decomposition, 66

decomposition.geometric, 70
decomposition.iterative, 68
decomposition.splitting, 71

expansion, 75

integral_interface, 88

loop_integral, 54

.make_package, 98
pySecDec.
.matrix_sort, 72
pySecDec.

make_regions, 102

misc, 95

polytope, 64

subtraction, 73

PYTHON MODULE INDEX

119

pySecDec Documentation, Release 1.5.2

120 Python Module Index

A

adjugate () (in module pySecDec.misc), 95
all_pairs () (in module pySecDec.misc), 95
apply_region () (in module
SecDec.make_regions), 102
argsort_2D_array () (in module pySecDec.misc),

Dy-

95

argsort_ND_array () (in module pySecDec.misc),
95

assert_degree_at_most_max_degree () (in
module pySecDec.misc), 95

B

becomes_zero_for () (py-

SecDec.algebra.Polynomial method), 51

C

cached_property () (in module pySecDec.misc), 95

Cheng_Wu () (in module py-
SecDec.decomposition.geometric), 70

chunks () (in module pySecDec.misc), 96

Coefficient (class in py-
SecDec.code_writer.sum_package), 80

complete_representation () (py-
SecDec.polytope.Polytope method), 64

compute_derivatives () (py-

SecDec.algebra.Function method), 48
convex_hull () (in module pySecDec.polytope), 65

copy () (pySecDec.algebra.ExponentiatedPolynomial
method), 47

copy () (pySecDec.algebra.Function method), 49

copy () (pySecDec.algebra.Log method), 49

copy () (pySecDec.algebra.Polynomial method), 51

copy () (pySecDec.algebra.Pow method), 52

copy () (pySecDec.algebra.Product method), 52

copy () (pySecDec.algebra.ProductRule method), 53

copy () (pySecDec.algebra.Sum method), 54

CPPIntegrator (class in
SecDec.integral_interface), 88

CQuad (class in pySecDec.integral_interface), 88

CudaQmc (class in pySecDec.integral_interface), 88

Cuhre (class in pySecDec.integral_interface), 89

py-

INDEX

D

derive () (pySecDec.algebra.ExponentiatedPolynomial
method), 47

derive () (pySecDec.algebra.Function method), 49

derive () (pySecDec.algebra.Log method), 49

derive () (pySecDec.algebra.LogOfPolynomial
method), 50

derive () (pySecDec.algebra.Polynomial method), 51

derive () (pySecDec.algebra.Pow method), 52

derive () (pySecDec.algebra.Product method), 52

derive () (pySecDec.algebra.ProductRule method), 53
(

derive () (pySecDec.algebra.Sum method), 54

derive_prod () (in module pySecDec.make_regions),
102

det () (in module pySecDec.misc), 96

Divonne (class in pySecDec.integral_interface), 89

doc () (in module pySecDec.misc), 96

E

EndOfDecomposition, 68

expand_region () (in module py-
SecDec.make_regions), 103
expand_singular () (in module py-

SecDec.expansion), 75
expand_sympy () (in module pySecDec.expansion),

76

expand_Taylor () (in module pySecDec.expansion),
75

ExponentiatedPolynomial (class in py-
SecDec.algebra), 47

Expression () (in module pySecDec.algebra), 48

F

find_regions () (in module py-
SecDec.make_regions), 103

find_singular_set () (in module py-

SecDec.decomposition.iterative), 68
find_singular_sets_at_one () (in module py-

SecDec.decomposition.splitting), 71
flatten () (in module pySecDec.misc), 96
from_expression ()

SecDec.algebra.ExponentiatedPolynomial

(py-

121

pySecDec Documentation, Release 1.5.2

static method), 47
from_expression ()
SecDec.algebra.LogOfPolynomial
method), 50
from_expression () (pySecDec.algebra.Polynomial
static method), 51
Function (class in pySecDec.algebra), 48

G

generate_fan () (in module
SecDec.decomposition.geometric), 70
generate_pylink_gmc_macro_dict () (in mod-
ule pySecDec.code_writer.template_parser), 81
geometric_decomposition () (in module py-
SecDec.decomposition.geometric), 70
geometric_decomposition_ku () (in module py-
SecDec.decomposition.geometric), 70

(py-

static

py-

Fi

has_constant_term{() (py-
SecDec.algebra.Polynomial method), 51

I

Integrallibrary (class in py-
SecDec.integral_interface), 90

integrate_by_parts() (in module py-
SecDec.subtraction), 73

integrate_pole_part () (in module py-
SecDec.subtraction), 74

iteration_step () (in module py-
SecDec.decomposition.iterative), 68

iterative_decomposition () (in module py-
SecDec.decomposition.iterative), 68

iterative_sort () (in module py-
SecDec.matrix_sort), 73

L

light_Pak_sort () (in module py-

SecDec.matrix_sort), 73
Log (class in pySecDec.algebra), 49
LogOfPolynomial (class in pySecDec.algebra), 50

loop_package () (in module py-
SecDec.loop_integral), 59
loop_regions () (in module py-

SecDec.loop_integral), 62
LoopIntegral (class in pySecDec.loop_integral), 55
LoopIntegralFromGraph (class in Dy-
SecDec.loop_integral), 55
LoopIntegralFromPropagators (class in py-
SecDec.loop_integral), 56
lowest_order () (in module pySecDec.misc), 96

M

make_cpp_1list () (in module pySecDec.misc), 97

make_package () (in module pySecDec.code_writer),
76

make_package () (in module py-
SecDec.make_package), 98
make_regions () (in module py-

SecDec.make_regions), 103

missing () (in module pySecDec.misc), 97

module
pySecDec.algebra, 47
pySecDec.code_writer, 76
pySecDec.code_writer.sum_package, 80
pySecDec.code_writer.template_parser,

81

pySecDec.decomposition, 66
pySecDec.decomposition.geometric, 70
pySecDec.decomposition.iterative, 68
pySecDec.decomposition.splitting, 71
pySecDec.expansion, 75
pySecDec.integral_interface, 88
pySecDec.loop_integral, 54
pySecDec.make_package, 98
pySecDec.make_regions, 102
pySecDec.matrix_sort, 72
pySecDec.misc, 95
pySecDec.polytope, 64
pySecDec.subtraction, 73

MultiIntegrator (class in py-
SecDec.integral_interface), 92

N

name: :complex_t (C++ type), 83, 85

name: :cuda_integrand_t (C++ type), 84, 85

name: :cuda_together_integrand_t (C++
type), 86

name: :get_sectors (C++ function), 86

name: :highest_orders (C++ member), 86

name: :highest_prefactor_orders (C++ mem-
ber), 86

name: :integrand_return_t (C++ type), 83, 85

name: :integrand_t (C++ type), 85

name: : lowest_orders (C++ member), 86

name: :lowest_prefactor_orders (C++ mem-
ber), 86

name: :make_amplitudes (C++ function), 84

name: :make_cuda_integrands (C++ function),
87

name: :make_integrands (C++ function), 87

name: :maximal_number_of_integration_variables
(C++ member), 86

name: :names_of_complex_parameters (C++
member), 83, 86

name: :names_of_real_parameters (C++ mem-
ber), 83, 86

name: :names_of_regulators (C++ member), 83

122

Index

pySecDec Documentation, Release 1.5.2

name: :number_of_amplitudes (C++ member),
83

name: :number_of_complex_parameters (C++
member), 83, 86

name: :number_of_integrals (C++ member), 83

name: :number_of_real_parameters (C++
member), 83, 86

name: :number_of_regulators (C++ member),
83, 86

name: :number_of_sectors (C++ member), 86

name: :pole_structures (C++ member), 87

name: :prefactor (C++ function), 87

name: :real_t (C++ type), 83, 85

name: : requested_orders (C++ member), 83, 86

O

OrderError, 75

P

Pak_sort () (in module pySecDec.matrix_sort), 72

parallel_det () (in module pySecDec.misc), 97

parse_template_file () (in module
SecDec.code_writer.template_parser), 81

parse_template_tree () (in module
SecDec.code_writer.template_parser), 82

plot_diagram() (in module
SecDec.loop_integral.draw), 62

pole_structure () (in module
SecDec.subtraction), 75

Polynomial (class in pySecDec.algebra), 50

Polytope (class in pySecDec.polytope), 64

Pow (class in pySecDec.algebra), 52

powerset () (in module pySecDec.misc), 97

primary_decomposition() (in module
SecDec.decomposition.iterative), 68

primary_decomposition_polynomial () (in
module pySecDec.decomposition.iterative), 69

py-

process () (pySecDec.code_writer.sum_package.Coefficient

method), 80

Product (class in pySecDec.algebra), 52
ProductRule (class in pySecDec.algebra), 53
pySecDec.algebra

module, 47
pySecDec.code_writer

module, 76
pySecDec.code_writer.sum_ package

module, 80
pySecDec.code_writer.template_parser

module, 81
pySecDec.decomposition

module, 66
pySecDec.decomposition.geometric

module, 70
pySecDec.decomposition.iterative

module, 68
pySecDec.decomposition.splitting
module, 71
pySecDec.expansion
module, 75
pySecDec.integral_interface
module, 88
pySecDec.loop_integral
module, 54
pySecDec.make_package
module, 98
pySecDec.make_regions
module, 102
pySecDec.matrix_sort
module, 72
pySecDec.misc
module, 95
pySecDec.polytope
module, 64
pySecDec.subtraction
module, 73

Q

Oomc (class in pySecDec.integral_interface), 93

R

rangecomb () (in module pySecDec.misc), 97
rec_subs () (in module pySecDec.misc), 98
refactorize () (in module pySecDec.algebra), 54
refactorize () (py-
SecDec.algebra.ExponentiatedPolynomial

method), 48

refactorize () (pySecDec.algebra.Polynomial
method), 51

remap_one_to_zero () (in module py-
SecDec.decomposition.splitting), 72

remap_parameters () (in module py-

SecDec.decomposition.iterative), 69
replace () (pySecDec.algebra.Function method), 49

replace () (pySecDec.algebra.Log method), 49
replace () (pySecDec.algebra.Polynomial method), 51
replace () (pySecDec.algebra.Pow method), 52
replace () (pySecDec.algebra.Product method), 53
replace () (pySecDec.algebra.ProductRule method),
53
(

replace () (pySecDec.algebra.Sum method), 54

S

secdecutil: :deep_apply (C++ function), 34
secdecutil::IntegrandContainer (C++
class), 37

secdecutil::IntegrandContainer::integrand

(C++ member), 37

Index

123

pySecDec Documentation, Release 1.5.2

secdecutil::IntegrandContainer: :number_of_intedundtion) Fdariables

(C++ member), 37

secdecutil::Integrator (C++ class), 38
secdecutil::Integrator::integrate (C++

function), 38

secdecutil::Integrator::together

member), 38

secdecutil::integrators::Qmc (C++ class),

39

secdecutil: :MultiIntegrator (C++ class), 38
secdecutil::MultiIntegrator::critical_dim

(C++ member), 38

secdecutil::Series::get_order_min (C++
function), 33

secdecutil::Series::get_truncated_above
(C++ function), 33

secdecutil::MultiIntegrator::high_dimensional_i(Celgmamber), 36

(C++ member), 38

(C++ secdecutil::Series::has_term (C++ func-
tion), 33
secdecutil::Series: :Series (C++ function),
33
secdecutil: :UncorrelatedDeviation (C++
class), 36
secdecutil::UncorrelatedDeviation: :uncertainty
secdecutil::UncorrelatedDeviation: :value

secdecutil::MultiIntegrator::low_dimensional_inCagrrember), 36

(C++ member), 38

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 33

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 31

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil: :PhonyNameDueToError:

(C++ member), 32

secdecutil::PhonyNameDueToError:

(C++ member), 31

secdecutil: :PhonyNameDueToError:

(C++ member), 32
secdecutil: :Series (C++ class), 33

:epsabs
repsrel

rerrormode

:min_epsséhplify ()

secdecutil: :WeightedIntegral (C++ struct),

:decrease_to_peXicentage

secdecutil::WeightedIntegral::coefficient
(C++ member), 31
secdecutil::WeightedIntegral: :display_name
(C++ member), 31
secdecutil::WeightedIntegral::integral
(C++ member), 31
secdecutil::WeightedIntegral::WeightedIntegral

:expression (C++ function), 31
Sector (class in pySecDec.decomposition), 66
:max_epsabsies_to_ginac () (in module py-
SecDec.integral_interface), 94
:max_epsseties_to_maple () (in module py-
SecDec.integral_interface), 94
:maxevalseries_to_mathematica () (in module py-
SecDec.integral_interface), 94
:maxincreaseé&acto_sympy () (in module py-

SecDec.integral_interface), 94

:min_decsempeifadtdpySecDec.algebra. ExponentiatedPolynomial

method), 48

:min_epsabwplify () (pySecDec.algebra.Function method), 49

simplify () (pySecDec.algebra.Log method), 49
(pySecDec.algebra.LogOfPolynomial
method), 50

:minevalsimplify () (pySecDec.algebra.Polynomial method),

51

:number_sfmphié&gdy (pySecDec.algebra.Pow method), 52

simplify () (pySecDec.algebra.Product method), 53

:reset_cadmpaffgt) (pySecDec.algebra.ProductRule method),

53

:verbosesimplify () (pySecDec.algebra.Sum method), 54

split () (in module pySecDec.decomposition.splitting),

:wall_clock_limit

split_singular () (in module
SecDec.decomposition.splitting), 72

py-

secdecutil::Series::expansion_parameter squash_symmetry_redundant_sectors_dreadnaut ()

(C++ member), 33

secdecutil::Series::get_order_max (C++

(in module pySecDec.decomposition), 67
squash_symmetry_redundant_sectors_sort ()

124

Index

pySecDec Documentation, Release 1.5.2

(in module pySecDec.decomposition), 66
Suave (class in pySecDec.integral_interface), 93
Sum (class in pySecDec.algebra), 54

sum_package () (in module py-
SecDec.code_writer.sum_package), 80
sympify_expression () (in module py-

SecDec.misc), 98
sympify_symbols () (in module pySecDec.misc), 98

T

to_sum () (pySecDec.algebra.ProductRule method), 54
transform_variables () (in module py-
SecDec.decomposition.geometric), 71

triangulate () (in module pySecDec.polytope), 65

\Y

validate_pylink_gmc_transforms () (in mod-
ule pySecDec.code_writer.template_parser), 82

Vegas (class in pySecDec.integral_interface), 94

vertex_incidence_lists() (py-
SecDec.polytope.Polytope method), 65

Index

125

	Installation
	Download the Program and Install
	The Geomethod and Normaliz
	Drawing Feynman Diagrams with neato
	Additional Dependencies for Generated c++ Packages

	Getting Started
	A Simple Example
	Evaluating a Loop Integral
	Evaluating a Weighted Sum of Integrals
	Using Expansion By Regions (Generic Integral)
	Using Expansion By Regions (Loop Integral)
	List of Examples

	Overview
	The Algebra Module
	Feynman Parametrization of Loop Integrals
	Sector Decomposition
	Subtraction
	Expansion

	SecDecUtil
	Amplitude
	Series
	Deep Apply
	Uncertainties
	Integrand Container
	Integrator

	Reference Guide
	Algebra
	Loop Integral
	Polytope
	Decomposition
	Matrix Sort
	Subtraction
	Expansion
	Code Writer
	Generated C++ Libraries
	Integral Interface
	Miscellaneous
	Expansion by Regions

	Frequently Asked Questions
	How can I adjust the integrator parameters?
	How can I request a higher numerical accuracy?
	What can I do if the integration takes very long?
	How can I tune the contour deformation parameters?
	What can I do if the program stops with an error message containing sign_check_error?
	What does additional_prefactor mean exactly?
	What can I do if I get nan?
	What can I use as numerator of a loop integral?
	How can I integrate just one coefficient of a particular order in the regulator?
	How can I use complex masses?
	When should I use the “split” option?
	How can I obtain results from pySecDec in a format convenient for GiNaC/ Sympy/ Mathematica/ Maple?
	Expansion by regions: what does the parameter z mean?
	Expansion by regions: why does the t-method not converge?

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

