pySecDec Documentation

Release 1.3.2

Sophia Borowka Gudrun Heinrich Stephen Jones Matthias Kerner Johannes Schlenk Tom Zirke

Contents

1 Installation 3
1.1 Download the Program and Install 3
1.2 The Geomethod and Normaliz 3
1.3 Drawing Feynman Diagrams with neato 4
1.4 Additional Dependencies for Generated c++ Packages 4
2 Getting Started 5
2.1 A Simple Example 5
2.2 Evaluating a Loop Integral 6
2.3 List of Examples 12
3 Overview 13
3.1 The Algebra Module 13
3.2 Feynman Parametrization of Loop Integrals 16
3.3 Sector Decomposition 18
3.4 Subtraction 21
3.5 Expansion 22
4 SecDecUtil 25
4.1 Series 25
4.2 Deep Apply 26
4.3 Uncertainties 27
4.4 Integrand Container 29
4.5 Integrator 30
5 Reference Guide 35
5.1 Algebra 35
5.2 Loop Integral 42
5.3 Polytope 49
5.4 Decomposition 50
5.5 Matrix Sort 57
5.6 Subtraction 58
5.7 Expansion 59
5.8 Code Writer 60
5.9 Generated C++ Libraries 65
5.10 Integral Interface 67
5.11 Miscellaneous 69
6 References 73
7 Indices and tables 75
Bibliography 77
Python Module Index 79
pySecDec [PSD17] is a toolbox for the calculation of dimensionally regulated parameter integrals using the sector decomposition approach [BH00]; see also [Hei08], [BHJ+15].
Please cite the following references if you use pySecDec for a scientific publication:

- pySecDec [PSD17]
- CUBA [Hah05], [Hah16]
- FORM [Ver00], [KUV13], [RUV17]
- GSL [GSL]
- nauty $[M P+14]$ (if you use dreadnaut)
- normaliz [BIR], [BIS16] (if you use a geometric decomposition strategy)

CHAPTER 1

Installation

1.1 Download the Program and Install

pySecDec should run fine with both, python 2.7 and python 3 on unix-like systems.
Before you install pySecDec, make sure that you have recent versions of numpy (http://www.numpy.org/) and sympy (http://www.sympy.org/) installed. The version of sympy should be 0.7 .6 or higher, the version of numpy should be 1.6 or higher. Type

```
$ python -c "import numpy"
$ python -c "import sympy"
```

to check for their availability.
In case either numpy or sympy are missing on your machine, it is easiest to install them from your package repository. Alternatively, and in particular if you do not have administrator rights, pip (https://pip.pypa.io/en/stable/) may be used to perform the installation.

To install pySecDec download and upack the tarball from http://secdec.hepforge.org/. The tarball contains a distribution of pySecDec and the additional dependencies listed below. Typing

```
$ make
```

should build all redistributed packages and display two commands to be added to your . bashrc or . profile.

1.2 The Geomethod and Normaliz

Note: If you are not urgently interested in using the geometric decomposition, you can ignore this section for the beginning. The instructions below are not essential for a pySecDec installation. You can still install normaliz after installing pySecDec. All but the geometric decomposition routines work without normaliz.

If you want to use the geometric decomposition module, you need the normaliz [BIR] command line executable. The geometric decomposition module is designed for normaliz version 3 -currently versions 3.0.0, $3.1 .0,3.1 .1,3.3 .0,3.4 .0,3.5 .4$, and 3.6 .0 are known to work. We recommend to set your \$PATH such that the normaliz executable is found. Alternatively, you can pass the path to the normaliz executable directly to the functions that need it.

1.3 Drawing Feynman Diagrams with neato

In order to use plot_diagram(), the command line tool neato must be available. The function loop_package () tries to call plot_diagram() if given a LoopIntegralFromGraph and issues a warning on failure. That warning can be safely ignored if you are not interested in the drawing.
neato is part of the graphviz package. It is available in many package repositories and at http://www.graphviz.org.

1.4 Additional Dependencies for Generated c++ Packages

The intended main usage of pySecDec is to make it write c++ packages using the functions pySecDec. code_writer.make_package() and pySecDec.loop_integral.loop_package (). In order to build these $c++$ packages, the following additional non-python-based libraries and programs are required:

- CUBA (http://www.feynarts.de/cuba/)
- FORM (http://www.nikhef.nl/~form/)
- SecDecUtil (part of pySecDec, see SedDecUtil), depends on:
- catch (https://github.com/philsquared/Catch)
- gsl (http://www.gnu.org/software/gsl/)

The functions pySecDec.code_writer.make_package() and pySecDec.loop_integral. loop_package () can use the external program nauty $[M P+14]$ to find all sector symmetries and therefore reduce the number of sectors:

- NAUTY (http://pallini.di.uniroma1.it/)

These packages are redistributed with the pySecDec tarball; i.e. you don't have to install any of them yourself.

CHAPTER 2

After installation, you should have a folder examples in your main pySecDec directory. Here we describe a few of the examples available in the examples directory. A full list of examples is given in List of Examples.

2.1 A Simple Example

We first show how to compute a simple dimensionally regulated integral:

$$
\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y(x+y)^{-2+\epsilon}
$$

To run the example change to the easy directory and run the commands:

```
$ python generate_easy.py
$ make -C easy
$ python integrate_easy.py
```

This will evaluate and print the result of the integral:

```
Numerical Result: + (1.00015897181235158e+00 +/- 4.03392522752491021e-03)*eps^-1 + (3.
\hookrightarrow06903035514056399e-01 +/- 2.82319349818329918e-03) + O(eps)
Analytic Result: + (1.000000)*eps^-1 + (0.306853) + O(eps)
```

The file generate_easy.py defines the integral and calls pySecDec to perform the sector decomposition. When run it produces the directory easy which contains the code required to numerically evaluate the integral. The make command builds this code and produces a library. The file integrate_easy.py loads the integral library and evaluates the integral. The user is encouraged to copy and adapt these files to evaluate their own integrals.

Note: If the user is interested in evaluating a loop integral there are many convenience functions that make this much easier. Please see Evaluating a Loop Integral for more details.

In generate_easy.py we first import make_package, a function which can decompose, subtract and expand regulated integrals and write a $\mathrm{C}++$ package to evaluate them. To define our integral we give it a name which will be used as the name of the output directory and C++ namespace. The integration_variables are declared along with a list of the name of the regulators. We must specify a list of the requested_orders to which pySecDec should expand our integral in each regulator. Here we specify requested_orders = [0] which instructs make_package to expand the integral up to and including $\mathcal{O}(\epsilon)$. Next, we declare the polynomials_to_decompose, here sympy syntax should be used.

```
from pySecDec import make_package
make_package(
name = 'easy',
integration_variables = ['x','y'],
regulators = ['eps'],
requested_orders = [0],
polynomials_to_decompose = ['(x+y)^(-2+eps)'],
)
```

Once the C++ library has been written and built we run integrate_easy.py. Here the library is loaded using IntegralLibrary. Calling the instance of Integrallibrary with easy_integral() numerically evaluates the integral and returns the result.

```
from pySecDec.integral_interface import IntegralLibrary
from math import log
# load c++ library
easy = IntegralLibrary('easy/easy_pylink.so')
# integrate
_, _, result = easy()
# print result
print('Numerical Result:' + result)
print('Analytic Result:' + ' + (%f)*eps^-1 + (%f) + O(eps)' % (1.0,1.0-log(2.0)))
```


2.2 Evaluating a Loop Integral

A simple example of the evaluation of a loop integral with pySecDec is boxlL. This example computes a one-loop box with one off-shell leg (with off-shellness s1) and one internal massive line (with mass squared msq), it is shown in Fig. 2.1.

To run the example change to the boxlL directory and run the commands:

```
$ python generate_box1L.py
$ make -C box1L
$ python integrate_box1L.py
```

This will print the result of the integral evaluated with Mandelstam invariants $s=4.0, t=-0.75$ and $s 1=1.25$, $\mathrm{msq}=1.0$:

Fig. 2.1: Diagrammatic representation of boxlL

```
eps^-2: -0.142868356275422825 - 1.63596224151119965e-6*I +/ - (0.00118022544307414272,
\hookrightarrow+ 0.000210769456586696187*I )
eps^-1: 0.639405625715768089 + 1.34277036689902802e-6*I +/- ( 0.006507223940655881664
\hookrightarrow+0.000971496627153705891*I )
eps^0 : -0.425514350373418893 + 1.86892487760861536*I +/ - (0.00706834403694714484 +
\hookrightarrow0.0186497890361357298*I )
```

The file generate_box1L.py defines the loop integral and calls pySecDec to perform the sector decomposition. When run it produces the directory boxlL which contains the code required to numerically evaluate the integral. The make command builds this code and produces a library. The file integrate_box1L.py loads the integral library and evaluates the integral for a specified numerical point.

The content of the python files is described in detail in the following sections. The user is encouraged to copy and adapt these files to evaluate their own loop integrals.

2.2.1 Defining a Loop Integral

To explain the input format, let us look at generate_box1L.py from the one-loop box example. The first two lines read

```
import pySecDec as psd
from pySecDec.loop_integral import loop_package
```

They say that the module pySecDec should be imported with the alias $p s d$, and that the function loop_package from the module loop_integral is needed.

The following part contains the definition of the loop integral li:

```
li = psd.loop_integral.LoopIntegralFromGraph(
# give adjacency list and indicate whether the propagator connecting the numbered
\hookrightarrowvertices is massive or massless in the first entry of each list item.
internal_lines = [['m',[1,2]],[0,[2,3]],[0,[3,4]],[0,[4,1]]],
# contains the names of the external momenta and the label of the vertex they arev
\hookrightarrowattached to
external_lines = [['p1',1],['p2',2],['p3',3],['p4',4]],
# define the kinematics and the names for the kinematic invariants
replacement_rules = [
    ('p1*p1', 's1'),
    ('p2*p2', 0),
    ('p3*p3', 0),
    ('p4*p4', 0),
    ('p3*p2', 't/2'),
    ('p1*p2', 's/2-s1/2'),
    ('p1*p4', 't/2-s1/2'),
    ('p2*p4', 's1/2-t/2-s/2'),
    ('p3*p4', 's/2'),
    ('m**2', 'msq')
    ]
)
```

Here the class LoopIntegralFromGraph is used to Feynman parametrize the loop integral given the adjacency list. Alternatively, the class LoopIntegralFromPropagators can be used to construct the Feynman integral given the momentum representation.
The symbols for the kinematic invariants and the masses also need to be given as an ordered list. The ordering is important as the numerical values assigned to these list elements at the numerical evaluation stage should have the
same order.

```
Mandelstam_symbols = ['s','t','s1']
mass_symbols = ['msq']
```

Next, the function loop_package is called. It will create a folder called boxlL. It performs the algebraic sector decomposition steps and writes a package containing the C++ code for the numerical evaluation. The argument requested_order specifies the order in the regulator to which the integral should be expanded. For a complete list of possible options see loop_package.

```
loop_package(
name = 'box1L',
loop_integral = li,
real_parameters = Mandelstam_symbols + mass_symbols,
# the highest order of the final epsilon expansion --> change this value to whateveru
\hookrightarrowyou think is appropriate
requested_order = 0,
# the optimization level to use in FORM (can be 0, 1, 2, 3)
form_optimization_level = 2,
# the WorkSpace parameter for FORM
form_work_space = '100M',
# the method to be used for the sector decomposition
# valid values are ``iterative`` or ``geometric`` or ``geometric_ku``
decomposition_method = 'iterative',
# if you choose '`geometric[_ku]`` and 'normaliz' is not in your
# $PATH, you can set the path to the 'normaliz' command-line
# executable here
#normaliz_executable='/path/to/normaliz',
)
```


2.2.2 Building the C++ Library

After running the python script generate_boxlL.py the folder boxlL is created and should contain the following files and subdirectories

Makefile	Makefile.conf	README	box1L.hpp	codegen	integrate_box1L.cpp	
$\rightarrow p y l i n k$	src					

in the folder boxlL, typing

```
$ make
```

will create the libraries libbox1L.a and box1L_pylink. so which can be linked to an external program calling these integrals. The make command can also be run in parallel by using the -j option.
To evaluate the integral numerically a program can call one of these libraries. How to do this interactively or via a python script is explained in the section Python Interface. Alternatively, a C++ program can be produced as explained in the section $C++$ Interface.

2.2.3 Python Interface (basic)

To evaluate the integral for a given numerical point we can use integrate_box1L.py. First it imports the necessary python packages and loads the C++ library.

```
from __future__ import print_function
from pySecDec.integral_interface import IntegralLibrary
import sympy as sp
# load c++ library
box1L = IntegralLibrary('box1L/box1L_pylink.so')
```

Next, an integrator is configured for the numerical integration. The full list of available integrators and their options is given in integral_interface.

```
# choose integrator
box.use_Vegas(flags=2) # ``flags=2``: verbose --> see Cuba manual
```

Calling the box library numerically evaluates the integral. Note that the order of the real parameters must match that specified in generate_box1L.py. A list of possible settings for the library, in particular details of how to set the contour deformation parameters, is given in IntegralLibrary. To change the accuracy settings of the integration, the most important parameters are epsrel, epsabs and maxeval, which can be added to the integrator argument list:

```
# choose integrator
box.use_Vegas(flags=2,epsrel=0.01, epsabs=1e-07, maxeval=1000000)
```

```
# integrate
str_integral_without_prefactor, str_prefactor, str_integral_with_prefactor = u
\hookrightarrowbox1L(real_parameters=[4.0, -0.75, 1.25, 1.0])
```

At this point the string str_integral_with_prefactor contains the full result of the integral and can be manipulated as required. In the integrate_box1L.py an example is shown how to parse the expression with sympy and access individual orders of the regulator.

Note: Instead of parsing the result, it can simply be printed with the line print(str_integral_with_prefactor).

```
# convert complex numbers from c++ to sympy notation
str_integral_with_prefactor = str_integral_with_prefactor.replace(','','+I*')
str_prefactor = str_prefactor.replace(',','+I*')
str_integral_without_prefactor = str_integral_without_prefactor.replace(',','+I*')
# convert result to sympy expressions
integral_with_prefactor = sp.sympify(str_integral_with_prefactor.replace('+/-',
\hookrightarrow'*value+error*'))
integral_with_prefactor_err = sp.sympify(str_integral_with_prefactor.replace('+/-',
\hookrightarrow'*value+error*'))
prefactor = sp.sympify(str_prefactor)
integral_without_prefactor = sp.sympify(str_integral_without_prefactor.replace('+/-',
\hookrightarrow'*value+error*'))
integral_without_prefactor_err = sp.sympify(str_integral_without_prefactor.replace('+/
\hookrightarrow-','*value+error*'))
# examples how to access individual orders
```

(continues on next page)
(continued from previous page)

```
print('Numerical Result')
print('eps^-2:', integral_with_prefactor.coeff('eps',-2).coeff('value'), '+/- (',
\hookrightarrowintegral_with_prefactor_err.coeff('eps',-2).coeff('error'), ')')
print('eps^-1:', integral_with_prefactor.coeff('eps',-1).coeff('value'), '+/- (', -
\hookrightarrowintegral_with_prefactor_err.coeff('eps',-1).coeff('error'), ')')
print('eps^0 :', integral_with_prefactor.coeff('eps',0).coeff('value'), '+/- (', r
\hookrightarrowintegral_with_prefactor_err.coeff('eps',0).coeff('error'), ')')
```

An example of how to loop over several kinematic points is shown in the example multiple_kinematic_points.py.

2.2.4 C++ Interface (advanced)

Usually it is easier to obtain a numerical result using the Python Interface. However, the library can also be used directly from C++. Inside the generated boxlL folder the file integrate_box1L.cpp demonstrates this.

The function print_integral_info shows how to access the important variables of the integral library.
In the main function a kinematic point must be specified by setting the real_parameters variable, for example:

```
int main()
{
// User Specified Phase-space point
    const std::vector<box1L::real_t> real_parameters = {4.0, -0.75, 1.25, 1.0}; ///v
GDIT: kinematic point specified here
    const std::vector<box1L::complex_t> complex_parameters = { };
```

The name: :make_integrands () function returns an secdecutil::IntegrandContainer for each sector and regulator order:

```
// Generate the integrands (optimization of the contour if applicable)
    const std::vector<box1L::nested_series_t<boxlL::integrand_t>> sector_integrands = =
\hookrightarrowboxlL::make_integrands(real_parameters, complex_parameters);
```

The sectors can be added before integration:

```
// Add integrands of sectors (together flag)
    const box1L::nested_series_t<box1L::integrand_t> all_sectors =_
\hookrightarrowstd::accumulate(++sector_integrands.begin(), sector_integrands.end(), *sector_
\hookrightarrowintegrands.begin() );
```

An secdecutil: : Integrator is constructed and its parameters are set:

```
Integrate
secdecutil::cuba::Vegas<boxlL::integrand_return_t> integrator;
integrator.flags = 2; // verbose output --> see cuba manual
```

To numerically integrate the functions the secdecutil: :Integrator: :integrate() function is applied to each secdecutil::IntegrandContainer using secdecutil:: deep_apply():

```
const box1L::nested_series_t<secdecutil::UncorrelatedDeviation<box1L::integrand_
\hookrightarrowreturn_t>> result_all = secdecutil::deep_apply( all_sectors, integrator.integrate );
```

The remaining lines print the result:

```
    std::cout << "------------" << std::endl << std::endl;
    std::cout << "-- integral info -- " << std::endl;
    print_integral_info();
    std::cout << std::endl;
    std::cout << "-- integral without prefactor -- " << std::endl;
    std::cout << result_all << std::endl << std::endl;
    std::cout << "-- prefactor -- " << std::endl;
    const box1L::nested_series_t<box1L::integrand_return_t> prefactor =_
\hookrightarrowbox1L::prefactor(real_parameters, complex_parameters);
    std::cout << prefactor << std::endl << std::endl;
    std::cout << "-- full result (prefactor*integral) -- " << std::endl;
    std::cout << prefactor*result_all << std::endl;
    return 0;
}
```

After editing the real_parameters as described above the C++ program can be built and executed with the commands

```
$ make integrate_box1L
$ ./integrate_box1L
```


2.3 List of Examples

Here we list the available examples. For more details regarding each example see [PSD17].

easy:	a simple parametric integral, described in Section 2.1
box1L:	a simple 1-loop, 4-point, 4-propagator integral, described in Section 2.2
$\begin{aligned} & \text { trian- } \\ & \text { gle2L: } \end{aligned}$	a 2-loop, 3-point, 6-propagator diagram, also known as P126
box2L_n	enatonssless planar on-shell 2-loop, 4-point, 7-propagator box with a numerator, either defined as an inverse propagator box2L_invprop.py or in terms of contracted Lorentz vectors box2L_contracted_tensor.py
$\begin{aligned} & \text { trian- } \\ & \text { gle3L: } \end{aligned}$	a 2-loop, 3-point, 7-propagator integral, demonstrates that the symmetry finder can significantly reduce the number of sectors
ellip- tic2L_eucli	an integral known to contain elliptic functions, evaluated at a Euclidean phase-space point ean:
elliptic2L_phys	an integral known to contain elliptic functions, evaluated at a physical phase-space point cal:
$\begin{aligned} & \text { trian- } \\ & \text { gle2L_split: } \end{aligned}$	a 2-loop, 3-point, 6-propagator integral without a Euclidean region due to special kinematics
hypergeo5F4:	a general dimensionally regulated parameter integral
4pho- ton1L_amp	calculation of the 4-photon amplitude, showing how to use pySecDec as an integral library in a larger itundmext
two_regulatonst integral involving poles in two different regulators.	
userdefined_cpp:	a collection of examples demonstrating how to combine polynomials to be decomposed with other user-defined functions

chapter 3

Overview

pySecDec consists of several modules that provide functions and classes for specific purposes. In this overview, we present only the most important aspects of selected modules. These are exactly the modules necessary to set up the algebraic computation of a Feynman loop integral requisite for the numerical evaluation. For detailed instruction of a specific function or class, please be referred to the reference guide.

3.1 The Algebra Module

The algebra module implements a very basic computer algebra system. pySecDec uses both sympy and numpy. Although sympy in principle provides everything we need, it is way too slow for typical applications. That is because sympy is completely written in python without making use of any precompiled functions. pySecDec's algebra module uses the in general faster numpy function wherever possible.

3.1.1 Polynomials

Since sector decomposition is an algorithm that acts on polynomials, we start with the key class Polynomial. As the name suggests, the Polynomial class is a container for multivariate polynomials, i.e. functions of the form:

$$
\sum_{i} C_{i} \prod_{j} x_{j}^{\alpha_{i j}}
$$

A multivariate polynomial is completely determined by its coefficients C_{i} and the exponents $\alpha_{i j}$. The Polynomial class stores these in two arrays:

```
>>> from pySecDec.algebra import Polynomial
>>> poly = Polynomial([[1,0], [0,2]], ['A', 'B'])
>>> poly
    + (A)*x0 + (B)*x1**2
>>> poly.expolist
array([[1, 0],
    [0, 2]])
```

```
>>> poly.coeffs
array([A, B], dtype=object)
```

It is also possible to instantiate the Polynomial by its algebraic representation:

```
>>> poly2 = Polynomial.from_expression('A*x0 + B*x1**2', ['x0','x1'])
>>> poly2
    +(A)*x0 + (B)*x1**2
>>> poly2.expolist
array([[1, 0],
    [0, 2]])
>>> poly2.coeffs
array([A, B], dtype=object)
```

Note that the second argument of Polynomial.from_expression() defines the variables x_{j}.
Within the Polynomial class, basic operations are implemented:

```
>>> poly + 1
    +(1) + (B)*x1**2 + (A)*x0
>>> 2 * poly
    +(2*A)*x0 + (2*B)*x1**2
>>> poly + poly
    +(2*B)*x1**2 + (2*A)*x0
>>> poly * poly
    +(B**2)*x1**4+(2*A*B)*x0*x1**2 + (A**2)*x0**2
>>> poly ** 2
    +(B**2)*x1**4+(2*A*B)*x0*x1**2 + (A**2)*x0**2
```


3.1.2 General Expressions

In order to perform the pySecDec.subtraction and pySecDec.expansion, we have to introduce more complex algebraic constructs.

General expressions can be entered in a straightforward way:

```
>>> from pySecDec.algebra import Expression
>>> log_of_x = Expression('log(x)', ['x'])
>>> log_of_x
log( + (1)*x)
```

All expressions in the context of this algebra module are based on extending or combining the Polynomials introduced above. In the example above, log_of_x is a LogOfPolynomial, which is a derived class from Polynomial:

```
>>> type(log_of_x)
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> isinstance(log_of_x, Polynomial)
True
>>> log_of_x.expolist
array([[1]])
>>> log_of_x.coeffs
array([1], dtype=object)
```

We have seen an extension to the Polynomial class, now let us consider a combination:

```
>>> more_complex_expression = log_of_x * log_of_x
>>> more_complex_expression
(log}(+(1)*x))*(\operatorname{log}(+(1)*x)
```

We just introduced the Product of two LogOfPolynomials:

```
>>> type(more_complex_expression)
<class 'pySecDec.algebra.Product'>
```

As suggested before, the Product combines two Polynomials. They are accessible through the factors:

```
>>> more_complex_expression.factors[0]
log( + (1)*x)
>>> more_complex_expression.factors[1]
log( + (1)*x)
>>> type(more_complex_expression.factors[0])
<class 'pySecDec.algebra.LogOfPolynomial'>
>>> type(more_complex_expression.factors[1])
<class 'pySecDec.algebra.LogOfPolynomial'>
```

Important: When working with this algebra module, it is important to understand that everything is based on the class Polynomial.

To emphasize the importance of the above statement, consider the following code:

```
>>> expression1 = Expression('x*y', ['x', 'y'])
>>> expression2 = Expression('x*y', ['x'])
>>> type(expression1)
<class 'pySecDec.algebra.Polynomial'>
>>> type(expression2)
<class 'pySecDec.algebra.Polynomial'>
>>> expression1
    + (1)*x*y
>>> expression2
    + (y)*x
```

Although expression1 and expression2 are mathematically identical, they are treated differently by the algebra module. In expression1, both, x and y, are considered as variables of the Polynomial. In contrast, y is treated as coefficient in expression2:

```
>>> expression1.expolist
array([[1, 1]])
>>> expression1.coeffs
array([1], dtype=object)
>>> expression2.expolist
array([[1]])
>>> expression2.coeffs
array([y], dtype=object)
```

The second argument of the function Expression controls how the variables are distributed among the coefficients and the variables in the underlying Polynomials. Keep that in mind in order to avoid confusion. One can always check which symbols are considered as variables by asking for the symbols:

```
>>> expression1.symbols
[x, y]
```

```
>>> expression2.symbols
```

[x]

3.2 Feynman Parametrization of Loop Integrals

The primary purpose of pySec Dec is the numerical calculation of loop integrals as they arise in fixed order calculations in quantum field theories. In the first step of our approach, the loop integral is converted from the momentum representation to the Feynman parameter representation, see for example [Hei08] (Chapter 3).

The module pySecDec.Ioop_integral implements exactly that conversion. The most basic use is to calculate the first and the second Symanzik polynomial U and F, respectively, from the propagators of a loop integral.

3.2.1 One Loop Bubble

To calculate U and F of the one loop bubble, type the following commands:

```
>>> from pySecDec.loop_integral import LoopIntegralFromPropagators
>>> propagators = ['k**2', '(k - p)**2']
>>> loop_momenta = ['k']
>>> one_loop_bubble = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> one_loop_bubble.U
    + (1)*x0 + (1)*x1
>>> one_loop_bubble.F
    +(-p**2)*x0*x1
```

The example above among other useful features is also stated in the full documenation of LoopIntegralFromPropagators() in the reference guide.

3.2.2 Two Loop Planar Box with Numerator

Consider the propagators of the two loop planar box:

```
>>> propagators = ['k1**2','(k1+p2)**2',
... '(k1-p1)**2','(k1-k2)**2',
... '(k2+p2)**2','(k2-p1)**2',
\cdots.. '(k2+p2+p3)**2']
>>> loop_momenta = ['k1','k2']
```

We could now instantiate the LoopIntegral just like before. However, let us consider an additional numerator:

```
>>> numerator = 'k1(mu)*k1(mu) + 2*k1(mu)*p3(mu) + p3(mu)*p3(mu)' # (k1 + p3) ** 2
```

In order to unambiguously define the loop integral, we must state which symbols denote the Lorentz_indices (just mu in this case here) and the external_momenta:

```
>>> external_momenta = ['p1','p2','p3','p4']
>>> Lorentz_indices=['mu']
```

With that, we can Feynman parametrize the two loop box with a numerator:
>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta, ... numerator=numerator, Lorentz_indices=Lorentz_

\rightarrow indices)

>>> box.U
$+(1) * x 3 * x 6+$
(1) *x $3 * x 5+$
(1) *x3*x4 +
(1) *x2*x6 +
(1) *x2*x5 +
(1) *x $2 * x 4+$
(1) *x $2 * x 3$
$\rightarrow+(1) * x 1 * x 6$
(1) $* x 1 * x 5+$
(1) $* x 1 * x 4$
(1) $* x 1 * x 3$
(1) $* x 0 * x 6+$
(1) $* x 0 * x 5$
(1) $* x 0 * x 4$
$\rightarrow+(1) * x 0 * x 3$
>>> box.F
$+(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-2 * \mathrm{p} 1 * \mathrm{p} 3-\mathrm{p} 2 * * 2-2 * \mathrm{p} 2 * \mathrm{p} 3-\mathrm{p} 3 * * 2) * \mathrm{x} 3 * \mathrm{x} 5 * \mathrm{x} 6+(-$ $\rightarrow \mathrm{p} 3 * * 2) * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{x} 6+(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-\mathrm{p} 2 * * 2) * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{x} 5+\left(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-2 * \mathrm{p} 1 * \mathrm{p} 3^{-}\right.$ $\rightarrow-\mathrm{p} 2 * * 2-2 * \mathrm{p} 2 * \mathrm{p} 3-\mathrm{p} 3 * * 2) * \mathrm{x} 2 * \mathrm{x} 5 * \mathrm{x} 6+(-\mathrm{p} 3 * * 2) * \mathrm{x} 2 * \mathrm{x} 4 * \mathrm{x} 6+(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-$ $\rightarrow \mathrm{p} 2 * * 2) * \mathrm{x} 2 * \mathrm{x} 4 * \mathrm{x} 5+(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-2 * \mathrm{p} 1 * \mathrm{p} 3-\mathrm{p} 2 * * 2-2 * \mathrm{p} 2 * \mathrm{p} 3-\mathrm{p} 3 * * 2) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 6+$ + $\rightarrow(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-\mathrm{p} 2 * * 2) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 4+\left(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-2 * \mathrm{p} 1 * \mathrm{p} 3-\mathrm{p} 2 * * 2-2 * \mathrm{p} 2 * \mathrm{p} 3^{\text {— }}\right.$ $\rightarrow-p 3 * * 2) * x 1 * x 5 * x 6+(-p 3 * * 2) * x 1 * x 4 * x 6+(-p 1 * * 2-2 * p 1 * p 2-p 2 * * 2) * x 1 * x 4 * x 5+(-$ $\rightarrow p 3 * * 2) * x 1 * x 3 * x 6+(-p 1 * * 2-2 * p 1 * p 2-p 2 * * 2) * x 1 * x 3 * x 5+(-p 1 * * 2-2 * p 1 * p 2--$ $\rightarrow p 2 * * 2) * x 1 * x 2 * x 6+(-p 1 * * 2-2 * p 1 * p 2-p 2 * * 2) * x 1 * x 2 * x 5+(-p 1 * * 2-2 * p 1 * p 2--$ $\hookrightarrow \mathrm{p} 2 * * 2) * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 4+(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-\mathrm{p} 2 * * 2) * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3+\left(-\mathrm{p} 1 * * 2-2 * \mathrm{p} 1 * \mathrm{p} 2-2 * \mathrm{p} 1 * \mathrm{p} 3^{\text {— }}\right.$ $\rightarrow-\mathrm{p} 2 * * 2-2 * p 2 * p 3-p 3 * * 2) * x 0 * x 5 * x 6+(-p 3 * * 2) * x 0 * x 4 * x 6+(-p 1 * * 2-2 * p 1 * p 2-$ $\rightarrow \mathrm{p} 2 * * 2) * \mathrm{x} 0 * \mathrm{x} 4 * \mathrm{x} 5+(-\mathrm{p} 2 * * 2-2 * \mathrm{p} 2 * \mathrm{p} 3-\mathrm{p} 3 * * 2) * \mathrm{x} 0 * \mathrm{x} 3 * \mathrm{x} 6+(-\mathrm{p} 1 * * 2) * \mathrm{x} 0 * \mathrm{x} 3 * \mathrm{x} 5+(-$ $\rightarrow \mathrm{p} 2 * * 2) * \mathrm{x} 0 * \mathrm{x} 3 * \mathrm{x} 4+(-\mathrm{p} 1 * * 2) * \mathrm{x} 0 * \mathrm{x} 2 * \mathrm{x} 6+(-\mathrm{p} 1 * * 2) * \mathrm{x} 0 * \mathrm{x} 2 * \mathrm{x} 5+(-\mathrm{p} 1 * * 2) * \mathrm{x} 0 * \mathrm{x} 2 * \mathrm{x} 4+(-$ $\hookrightarrow p 1 * * 2) * x 0 * x 2 * x 3+(-p 2 * * 2) * x 0 * x 1 * x 6+(-p 2 * * 2) * x 0 * x 1 * x 5+(-p 2 * * 2) * x 0 * x 1 * x 4+(-$ $\rightarrow \mathrm{p} 2 * * 2) * \mathrm{x} 0 * \mathrm{x} 1 * \mathrm{x} 3$
>>> box.numerator
$+(2 * e p s * p 3(\mathrm{mu}) * * 2+2 * \mathrm{p} 3(\mathrm{mu}) * * 2) * U * * 2+(\mathrm{eps}-2) * x 6 * F+(e p s-2) * x 5 * F+(e p s-$ $\hookrightarrow 2) * x 4 * F+(e p s-2) * x 3 * F+(-4 * e p s * p 2(m u) * p 3(m u)-4 * e p s * p 3(m u) * * 2-七$ $\hookrightarrow 4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 3(\mathrm{mu}) * * 2) * x 3 * x 6 * \mathrm{U}+\left(4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+_{\bullet}\right.$
$\rightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 3 * \mathrm{x} 5 * \mathrm{U}+(-4 * \mathrm{eps} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{U}+_{\text {- }}$
$\hookrightarrow(2 * e p s * p 2(\mathrm{mu}) * * 2+4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+2 * e \mathrm{ps} * \mathrm{p} 3(\mathrm{mu}) * * 2+2 * \mathrm{p} 2(\mathrm{mu}) * * 2+$ +
$\rightarrow 4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+2 * \mathrm{p} 3(\mathrm{mu}) * * 2) * \mathrm{x} 3 * * 2 * \mathrm{x} 6 * * 2+(-4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})--$
$\hookrightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 3 * * 2 * \mathrm{x} 5 * \mathrm{x} 6+_{\bullet}$
$\rightarrow(2 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * * 2+2 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 3 * * 2 * \mathrm{x} 5 * * 2+\left(4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * * 2+{ }_{-}\right.$
$\rightarrow 4 * e \mathrm{ps} \star \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})+4 \star \mathrm{p} 2(\mathrm{mu}) * * 2+4 \star \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})) \star \mathrm{x} 3 * * 2 * \mathrm{x} 4 * \mathrm{x} 6+(-$
$\hookrightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 3 * * 2 * \mathrm{x} 4 * \mathrm{x} 5+(2 * \mathrm{eps} * \mathrm{p} 2(\mathrm{mu}) * * 2+$
$\rightarrow 2 * p 2(\mathrm{mu}) * * 2) * x 3 * * 2 * x 4 * * 2+(4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 6 * \mathrm{U}+{ }_{4}$
$\hookrightarrow(4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 5 * \mathrm{U}+(4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+\quad+$
$\hookrightarrow 4 * p 1(m u) * p 3(m u)) * x 2 * x 4 * U+(4 * e p s * p 1(m u) * p 3(m u)+4 * p 1(m u) * p 3(m u)) * x 2 * x 3 * U+(-$
$\leftrightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-$ -
$\hookrightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 6 * * 2+(4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2-4 * \mathrm{p} s * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-\quad-$
$\rightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+4 * \mathrm{p} 1(\mathrm{mu}) * * 2-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 5 * \mathrm{x} 6$ (
$\rightarrow+(4 * e p s * p 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 5 * * 2+(-8 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-$ -
$\hookrightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-8 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{x} 6$ +
$\rightarrow(4 * e p s * p 1(\mathrm{mu}) * * 2-4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})+4 * \mathrm{p} 1(\mathrm{mu}) * * 2-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{x} 5$ (4
$\rightarrow+(-4 * e p s * p 1(m u) * p 2(m u)-4 * p 1(m u) * p 2(m u)) * x 2 * x 3 * x 4 * * 2+(-4 * e p s * p 1(m u) * p 2(m u)-\quad-$
$\rightarrow 4 * e p s * p 1(m u) * p 3(m u)-4 * p 1(m u) * p 2(m u)-4 * p 1(m u) * p 3(m u)) * x 2 * x 3 * * 2 * x 6+\quad+$
$\hookrightarrow(4 * e p s * p 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * \mathrm{x} 3 * * 2 * \mathrm{x} 5+(-4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-\quad-$
$\hookrightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 2 * \mathrm{x} 3 * * 2 * \mathrm{x} 4+(2 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2+2 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 6 * * 2+{ }_{\bullet}$
$\rightarrow(4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 5 * \mathrm{x} 6+\left(2 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * * 2+{ }_{4}\right.$
$\rightarrow 2 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 5 * * 2+(4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 4 * \mathrm{x} 6+{ }_{\bullet}$
$\rightarrow(4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 4 * \mathrm{x} 5+\left(2 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2+{ }_{4}\right.$
$\rightarrow 2 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 4 * * 2+(4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 3 * \mathrm{x} 6+$ +
$\rightarrow(4 * e p s * p 1(\mathrm{mu}) * * 2+4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * x 2 * * 2 * x 3 * x 5+\left(4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * * 2+{ }^{+}\right.$
$\hookrightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 3 * \mathrm{x} 4+(2 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * * 2+2 * \mathrm{p} 1(\mathrm{mu}) * * 2) * \mathrm{x} 2 * * 2 * \mathrm{x} 3 * * 2+(-$
$\hookrightarrow 4 * e p s * p 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})) * x 1 * x 6 * \mathrm{U}+(-4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})--$
$\rightarrow 4 * \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})) \star \mathrm{x} 1 * \mathrm{x} 5 * \mathrm{U}+(-4 * \mathrm{eps} * \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 2(\mathrm{mu}) \star \mathrm{p} 3(\mathrm{mu})) \star \mathrm{x} 1 * \mathrm{x} 4 * \mathrm{U}+(-$
$\hookrightarrow 4 * e p s * p 2(m u) * p 3(m u)-4 * p 2(m u) * p 3(m u)) * x 1 * x 3 * U+(4 * e p s * p 2(m u) * * 2+$ +
$\hookrightarrow 4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})+4 * \mathrm{p} 2(\mathrm{mu}) * * 2+4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 3 * \mathrm{x} 6 * * 2+(-$
$\rightarrow 4 * e p s * p 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})+4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * * 2+4 * e \mathrm{ps} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})+{ }_{+}$
$\rightarrow 4 * \mathrm{p} 2(\mathrm{mu}) * * 2+4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * x 1 * x 3 * x 5 * x 6+(-4 * e \mathrm{ps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-$.
$\rightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 3 * \mathrm{x} 5 * * 2+(8 * \mathrm{eps} * \mathrm{p} 2(\mathrm{mu}) * * 2+4 * \mathrm{pss} * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})$ (continues on nextpage)
$\rightarrow+4 * \mathrm{p} 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 3 * \mathrm{x} 4 * \mathrm{x} 6+(-4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})+4 * \mathrm{eps} * \mathrm{p} 2(\mathrm{mu}) * * 2-$ -

x5 + (4*eps*p2 (mu) **2 ${ }_{\bullet}$
$\rightarrow 4 * p 2(\mathrm{mu}) * \mathrm{p} 3(\mathrm{mu})) * \mathrm{x} 1 * x 3 * * 2 * \mathrm{x} 6+(-4 * \operatorname{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 3 * * 2 * \mathrm{x} 5^{4}$
$\rightarrow+(4 * e p s * p 2(\mathrm{mu}) * * 2+4 * \mathrm{p} 2(\mathrm{mu}) * * 2) * \mathrm{x} 1 * \mathrm{x} 3 * * 2 * \mathrm{x} 4+\left(-4 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})--_{-}\right.$
$\rightarrow 4 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 6 * * 2+(-8 * \mathrm{eps} * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})-8 * \mathrm{p} 1(\mathrm{mu}) * \mathrm{p} 2(\mathrm{mu})) * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 5 * \mathrm{x} 66$

We can also generate the output in terms of Mandelstam invariants:

```
>>> replacement_rules = [
... ('pl*p1', 0),
... ('p2*p2', 0),
... ('p3*p3', 0),
... ('p4*p4', 0),
... ('p1*p2', 's/2'),
... ('p2*p3', 't/2'),
... ('p1*p3',' '-s/2-t/2')
... ]
>>> box = LoopIntegralFromPropagators(propagators, loop_momenta, external_momenta,
... numerator=numerator, Lorentz_indices=Lorentz_
\hookrightarrowindices,
>>> box.U
    +(1)*x3*x6 + (1)*x 3*x5 + (1)*x **x4 + (1)*x **x6 + (1)*x 2*x5 + (1)*x2*x4 + (1)*x2*x3_
\hookrightarrow+(1)*x1*x6 + (1)*x1*x5 + (1)*x1*x4 + (1)*x1*x3 + (1)*x0*x6 + (1)*x0*x5 + (1)*x0*x4 
\hookrightarrow+(1)*x0*x3
>>> box.F
    +(-s)*x 3*x4*x5 + (-s)*x 2*x4*x5 + (-s)*x * *x 3*x4 + (-s)*x1*x4*x5 + (-s)*x1*x **x5 + (-
```



```
\hookrightarrowt)*x0*x 3*x6
>>> box.numerator
    +(eps - 2)*x6*F + (eps - 2)*x5*F + (eps - 2)*x4*F + (eps - 2)*x **F + (-2*eps*t - - 
\hookrightarrow 2*t)*x 3*x6*U + (4*eps*(-s/2 - t/2) - 2*s - 2*t)*x 3*x5*U + (-2*eps*t - 2*t)*x **x4*UU
\hookrightarrow+(2*eps*t + 2*t)*x 3**2*x6**2 + (-2*eps*s - 4*eps*(-s/2 - t/2) + 2*t)*x 3** 2*x 5*x6 + +
\hookrightarrow(2*eps*t + 2*t)*x 3**2*x4*x6 + (-2*eps*s - 2*s)*x 3**2*x4*x5 + (4*eps*(-s/2 - t/2) - - 
\hookrightarrow 2*s - 2*t)*x 2*x6*U + (4*eps*(-s/2 - t/2) - 2*s - 2*t)*x 2*x 5*U + (4*eps*(-s/2 - t/2) - 
\hookrightarrow-2*s - 2*t)*x2*x4*U + (4*eps*(-s/2 - t/2) - 2*s - 2*t)*x **x 3*U + (-2*eps*s - -
\hookrightarrow*eps*(-s/2 - t/2) + 2*t)*x 2*x 3*x6**2 + (-2*eps*s - 4*eps* (-s/2 - t/2) +_
\hookrightarrow 2*t)*x 2*x * *x 5*x6 + (-4*eps*s - 4*eps*(-s/2 - t/2) - 2*s + 2*t)*x 2*x 3*x4*x6 + (-
\hookrightarrow 2*eps*s - 2*s)*x * *x 3*x4*x5 + (-2*eps*s - 2*s)*x 2*x 3*x4**2 + (-2*eps*s - 4*eps*(-s/2 - 
\hookrightarrow-t/2) + 2*t)*x 2*x 3**2*x6 + (-2*eps*s - 2*s)*x 2*x 3**2*x4 + (-2*eps*t - 2*t)*x1*x6*U
\hookrightarrow+(-2*eps*t - 2*t)*x1*x5*U + (-2*eps*t - 2*t)*x1*x4*U + (-2*eps*t - 2*t)*x1*x **U + 
\hookrightarrow(2*eps*t + 2*t)*x1*x 3*x6**2 + (-2*eps*s + 2*eps*t - 2*s + 2*t)*x1*x 3*x5*x6 + (-
\hookrightarrow 2*eps*s - 2*s)*x1*x 3*x5**2 + (2*eps*t + 2*t)*x1*x 3*x4*x6 + (-2*eps*s --
```



```
\hookrightarrow2*eps*s - 2*s)*x * *x 2*x6**2 + (-4*eps*s - 4*s)*x 1*x 2*x5*x6 + (-2*eps*s - -
\hookrightarrow 2*s)*x * *x 2*x 5**2 + (-4*eps*s - 4*s)*x1*x 2*x4*x6 + (-4*eps*s - 4*s)*x ** 2 *x 4*x5 + (-
\hookrightarrow*eps*s - 2*s)*x 1*x 2*x4**2 + (-4*eps*s - 4*s)*x1*x 2*x 3*x6 + (-4*eps*s - - 
\hookrightarrow4*s)*x1*x2*x 3*x5 + (-4*eps*s - 4*s)*x1*x 2*x 3*x4 + (-2*eps*s - 2*s)*x 1*x 2*x 若**2
```


3.3 Sector Decomposition

The sector decomposition algorithm aims to factorize the polynomials P_{i} as products of a monomial and a polynomial with nonzero constant term:

$$
P_{i}\left(\left\{x_{j}\right\}\right) \longmapsto \prod_{j} x_{j}^{\alpha_{j}}\left(\text { const }+p_{i}\left(\left\{x_{j}\right\}\right)\right)
$$

Factorizing polynomials in that way by expoliting integral transformations is the first step in an algorithm for solving dimensionally regulated integrals of the form

$$
\int_{0}^{1} \prod_{i, j} P_{i}\left(\left\{x_{j}\right\}\right)^{\beta_{i}} d x_{j}
$$

The iterative sector decomposition splits the integral and remaps the integration domain until all polynomials P_{i} in all arising integrals (called sectors) have the desired form const + polynomial. An introduction to the sector decomposition approach can be found in [Hei08].

To demonstrate the pySecDec. decomposition module, we decompose the polynomials

```
>>> p1 = Polynomial.from_expression('x + A*y', ['x','y','z'])
>>> p2 = Polynomial.from_expression('x + B*y*z', ['x','y','z'])
```

Let us first focus on the iterative decomposition of p1. In the pySecDec framework, we first have to pack p1 into a Sector:

```
>>> from pySecDec.decomposition import Sector
>>> initial_sector = Sector([pl])
>>> print(initial_sector)
Sector:
Jacobian= + (1)
cast=[( + (1)) * ( + (1)*x + (A)*y)]
other= []
```

We can now run the iterative decomposition and take a look at the decomposed sectors:

```
>>> from pySecDec.decomposition.iterative import iterative_decomposition
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
. . .
Sector:
Jacobian= + (1)*x
cast=[( + (1)*x) * ( + (1) + (A)*y)]
other= [ ]
Sector:
Jacobian= + (1)*y
cast =[( + (1)*y) * ( + (1)*x + (A))]
other= [ ]
```

The decomposition of p 2 needs two iterations and yields three sectors:

```
>>> initial_sector = Sector([p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast}=[(+(1)*x)*(+(1) +(B)*Y*z)
other= [ ]
```

```
Sector:
Jacobian= + (1)*x*y
cast}=[(+(1)*x*y)*(+(1) +(B)*z)
other= [ ]
Sector:
Jacobian= + (1)*y*z
cast=[( + (1)*y*z) * ( + (1)*x + (B)) ]
other= [ ]
```

Note that we declared z as a variable for sector p 1 evne though it does not depend on it. This declaration is necessary if we want to simultaneously decompose p 1 and p 2 :

```
>>> initial_sector = Sector([p1, p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
. .
Sector:
Jacobian= + (1)*x
cast=[( + (1)*x) * ( + (1) + (A)*y), ( + (1)*x) * ( + (1) + (B)*Y*z)]
other= [ ]
Sector:
Jacobian= + (1)*x*y
cast=[( + (1)*y) * ( + (1)*x + (A)), ( + (1)*x*y) * ( + (1) + (B)*z)]
other= [ ]
Sector:
Jacobian= + (1)*y*z
cast=[( + (1)*y) * ( + (1)*x*z + (A)), ( + (1)*Y*z) * ( + (1)*x + (B))]
other= []
```

We just fully decomposed p 1 and p 2 . In some cases, one may want to bring one polynomial, say p 1 , into standard form, but not neccessarily the other. For that purpose, the Sector can take a second argument. In the following code example, we bring p1 into standard form, apply all transformations to p2 as well, but stop before p2 is fully decomposed:

```
>>> initial_sector = Sector([p1], [p2])
>>> decomposed_sectors = iterative_decomposition(initial_sector)
>>> for sector in decomposed_sectors:
... print(sector)
... print('\n')
...
Sector:
Jacobian= + (1)*x
cast}=[(+(1)*x)*(+(1) +(A)*y)
other=[ + (1)*x + (B)*x*y*z]
Sector:
```

```
Jacobian= + (1)*y
cast}=[(+(1)*y)*( + (1)*x + (A))]
other=[ + (1)*x*y + (B)*y*z]
```


3.4 Subtraction

In the subtraction, we want to perform those integrations that lead to ϵ divergencies. The master formula for one integration variables is

$$
\int_{0}^{1} x^{(a-b \epsilon)} \mathcal{I}(x, \epsilon) d x=\sum_{p=0}^{|a|-1} \frac{1}{a+p+1-b \epsilon} \frac{\mathcal{I}^{(p)}(0, \epsilon)}{p!}+\int_{0}^{1} x^{(a-b \epsilon)} R(x, \epsilon) d x
$$

where $\mathcal{I}^{(p)}$ is denotes the p-th derivative of \mathcal{I} with respect to x. The equation above effectively defines the remainder term R. All terms on the right hand side of the equation above are constructed to be free of divergencies. For more details and the generalization to multiple variables, we refer the reader to [Hei08]. In the following, we show how to use the implementation in pySecDec.
To initialize the subtraction, we first define a factorized expression of the form $x^{\left(-1-b_{x} \epsilon\right)} y^{\left(-2-b_{y} \epsilon\right)} \mathcal{I}(x, y, \epsilon)$:

```
>>> from pySecDec.algebra import Expression
>>> symbols = ['x','y','eps']
>>> x_monomial = Expression('x**(-1 - b_x*eps)', symbols)
>>> y_monomial = Expression('y**(-2 - b_y*eps)', symbols)
>>> cal_I = Expression('cal_I(x, y, eps)', symbols)
```

We must pack the monomials into a pySecDec.algebra. Product:

```
>>> from pySecDec.algebra import Product
>>> monomials = Product(x_monomial, y_monomial)
```

Although this seems to be to complete input according to the equation above, we are still missing a structure to store poles in. The function pySecDec.subtraction. integrate_pole_part () is designed to return an iterable of the same type as the input. That is particularly important since the output of the subtraction of one variable is the input for the subtraction of the next variable. We will see this iteration later. Initially, we do not have poles yet, therefore we define a one of the required type:

```
>>> from pySecDec.algebra import Pow
>>> import numpy as np
>>> polynomial_one = Polynomial(np.zeros([1,len(symbols)], dtype=int), np.array([1]),r
\hookrightarrowymbols, copy=False)
>>> pole_part_initializer = Pow(polynomial_one, -polynomial_one)
```

pole_part_initializer is of type pySecDec.algebra.Pow and has -polynomial_one in the exponent. We initialize the base with polynomial_one; i.e. a one packed into a polynomial. The function pySecDec. subtraction.integrate_pole_part () populates the base with factors of $b \epsilon$ when poles arise.

We are now ready to build the subtraction_initializer - the pySecDec.algebra.Product to be passed into pySecDec.subtraction.integrate_pole_part().

```
>>> from pySecDec.subtraction import integrate_pole_part
>>> subtraction_initializer = Product(monomials, pole_part_initializer, cal_I)
>>> x_subtracted = integrate_pole_part(subtraction_initializer, 0)
```

The second argument of pySecDec.subtraction.integrate_pole_part () specifies to which variable we want to apply the master formula, here we choose x. First, remember that the x monomial is a dimensionally regulated x^{-1}. Therefore, the sum collapses to only one term and we have two terms in total. Each term corresponds to one entry in the list x _subtracted:

```
>>> len(x_subtracted)
2
```

x_subtracted has the same structure as our input. The first factor of each term stores the remaining monomials:

```
>>> x_subtracted[0].factors[0]
(( + (1))**( + (-b_x)*eps + (-1))) * (( + (1)*y)**( + (-b_y)*eps + (-2)))
>>> x_subtracted[1].factors[0]
(( + (1)*x)**( + (-b_x)*eps + (-1))) * (( + (1)*y)**( + (-b_y)*eps + (-2)))
```

The second factor stores the ϵ poles. There is an epsilon pole in the first term, but still none in the second:

```
>>> x_subtracted[0].factors[1]
( + (-b_x)*eps) ** ( + (-1))
>>> x_subtracted[1].factors[1]
( + (1)) ** ( + (-1))
```

The last factor catches everything that is not covered by the first two fields:

```
>>> x_subtracted[0].factors[2]
(cal_I( + (0), + (1)*y, + (1)*eps))
>>> x_subtracted[1].factors[2]
(cal_I( + (1)*x, + (1)*y, + (1)*eps)) + (( + (-1)) * (cal_I( + (0), + (I)*y, +_
\hookrightarrow(1)*eps)))
```

We have now performed the subtraction for x. Because in and output have a similar structure, we can easily perform the subtraction for y as well:

```
>>> x_and_y_subtracted = []
>>> for s in x_subtracted:
... x_and_y_subtracted.extend( integrate_pole_part(s,1) )
```

Alternatively, we can directly instruct pySecDec.subtraction. integrate_pole_part () to perform both subtractions:

```
>>> alternative_x_and_y_subtracted = integrate_pole_part(subtraction_initializer,0,1)
```

In both cases, the result is a list of the terms appearing on the right hand side of the master equation.

3.5 Expansion

The purpose of the expansion module is, as the name suggests, to provide routines to perform a series expansion. The module basically implements two routines - the Taylor expansion (pySecDec.expansion. expand_Taylor ()) and an expansion of polyrational functions supporting singularities in the expansion variable (pySecDec.expansion.expand_singular()).

3.5.1 Taylor Expansion

The function pySecDec.expansion.expand_Taylor () implements the ordinary Taylor expansion. It takes an algebraic expression (in the sense of the algebra module, the index of the expansion variable and the order to which
the expression shall be expanded:

```
>>> from pySecDec.algebra import Expression
>>> from pySecDec.expansion import expand_Taylor
>>> expression = Expression('x**eps', ['eps'])
>>> expand_Taylor(expression, 0, 2).simplify()
```


It is also possible to expand an expression in multiple variables simultaneously:

```
>>> expression = Expression('x**(eps + alpha)', ['eps', 'alpha'])
>>> expand_Taylor(expression, [0,1], [2,0]).simplify()
+(1) + (log( + (x)))*eps + ((log( + (x))) * (log( + (x))) * ( + (1/2)))*eps**2
```

The command above instructs pySecDec.expansion.expand_Taylor() to expand the expression to the second order in the variable indexed 0 (eps) and to the zeroth order in the variable indexed 1 (alpha).

3.5.2 Laurent Expansion

pySecDec.expansion.expand_singular() Laurent expands polyrational functions.
Its input is more restrictive than for the Taylor expansion. It expects a Product where the factors are either Polynomials or ExponentiatedPolynomials with exponent $=-1$:

```
>>> from pySecDec.expansion import expand_singular
>>> expression = Expression('l/(eps + alpha)', ['eps', 'alpha']).simplify()
>>> expand_singular(expression, 0, 1)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 241, in
\hookrightarrowexpand_singular
            return _expand_and_flatten(product, indices, orders, _expand_singular_step)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 209, in _
\hookrightarrowexpand_and_flatten
            expansion = recursive_expansion(expression, indices, orders)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 198, in
\hookrightarrowrecursive_expansion
            expansion = expansion_one_variable(expression, index, order)
    File "/home/pcl340a/sjahn/Projects/pySecDec/pySecDec/expansion.py", line 82, in _
\hookrightarrowexpand_singular_step
            raise TypeError('`product` must be a `Product`')
TypeError: `product` must be a `Product`
>>> expression # ``expression`` is indeed a polyrational function.
( + (1)*alpha + (1)*eps)**(-1)
>>> type(expression) # It is just not packed in a ``Product`` as ``expand_singular```
\hookrightarrowexpects.
<class 'pySecDec.algebra.ExponentiatedPolynomial'>
>>> from pySecDec.algebra import Product
>>> expression = Product(expression)
>>> expand_singular(expression, 0, 1)
    +(( + (1))* (( + (1)*alpha)**(-1))) + (( + (-1)) * (( + (1)*alpha**2)** (-1)))*eps
```

Like in the Taylor expansion, we can expand simultaneously in multiple parameters. Note, however, that the result of the Laurent expansion depends on the ordering of the expansion variables. The second argument of pySecDec. expansion. expand_singular() determines the order of the expansion:

```
>>> expression = Expression('1/(2*eps) * 1/(eps + alpha)', ['eps', 'alpha']).
\hookrightarrowsimplify()
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> eps_first
+(( + (1/2))* (( + (1))** (-1)))*eps**-1*alpha**-1 + (( + (-1/2)) * (( + (1))**(-
\hookrightarrow1)))*alpha**-2 +(( + (1)) * (( + (2))**(-1)))*eps*alpha**-3
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> alpha_first
    +(( + (1/2)) * (( + (1))**(-1)))*eps**-2 + (( + (-1/2)) * (( + (1))**(-1)))*eps**-
\hookrightarrow**alpha
```

The expression printed out by our algebra module are quite messy. In order to obtain nicer output, we can convert these expressions to the slower but more high level sympy:

```
>>> import sympy as sp
>>> eps_first = expand_singular(expression, [0,1], [1,1])
>>> alpha_first = expand_singular(expression, [1,0], [1,1])
>>> sp.sympify(eps_first)
1/(2*alpha*eps) - 1/(2*alpha**2) + eps/(2*alpha**3)
>>> sp.sympify(alpha_first)
-alpha/(2*eps**3) + 1/(2*eps**2)
```


CHAPTER 4

SecDecUtil

SecDecUtil is a standalone autotools-c++ package, that collects common helper classes and functions needed by the c++ code generated using loop_package or make_package. Everything defined by the SecDecUtil is put into the c++ namepace secdecutil.

4.1 Series

A class template for containing (optionally truncated) Laurent series. Multivariate series can be represented as series of series.

This class overloads the arithmetic operators $(+,-, \star, /)$ and the comparator operators $(==,!=)$. A string representation can be obtained using the \ll operator. The at (i) and [i] operators return the coefficient of the $i^{\text {th }}$ power of the expansion parameter. Otherwise elements can be accessed identically to std: :vector.

```
template<typename T>
class Series
```

std::string expansion_parameter
A string representing the expansion parameter of the series (default x)
int get_order_min() const
Returns the lowest order in the series.
int get_order_max () const
Returns the highest order in the series.
bool get_truncated_above () const
Checks whether the series is truncated from above.
bool has_term (int order) const
Checks whether the series has a term at order order.
Series (int order_min, int order_max, std::vector<T> content, bool truncated_above $=$ true, const std::string expansion_parameter $=" \mathrm{x} "$)

Example:

```
#include <iostream>
#include <secdecutil/series.hpp>
int main()
{
    secdecutil::Series<int> exact(-2,1,{1,2,3,4},false,"eps");
    secdecutil::Series<int> truncated(-2,1,{1,2,3,4},true,"eps");
    secdecutil::Series<secdecutil::Series<int>> multivariate(1,2,
                                    {
                                    {-2,-1,{1,2},false,
\hookrightarrow"alpha"},
\hookrightarrow"alpha"},
                                    },false,"eps"
                                    );
    std::cout << "exact: " << exact << std::endl;
    std::cout << "truncated: " << truncated << std::endl;
    std::cout << "multivariate: " << multivariate << std::endl << std::endl;
    std::cout << "exact + 1: " << exact + 1 << std::endl;
    std::cout << "exact * exact: " << exact * exact << std::endl;
    std::cout << "exact * truncated: " << exact * truncated << std::endl;
    std::cout << "exact.at(-2): " << exact.at(-2) << std::endl;
}
```

Compile/Run:
\$ c++ -I\$\{SECDEC_CONTRIB\}/include -std=c++11 example.cpp -o example -lm \&\& ./example
Output:

```
exact: + (1)*eps^-2 + (2)*eps^-1 + (3) + (4)*eps
truncated: + (1)*eps\mp@subsup{s}{}{\wedge}-2 + (2)*eps\mp@subsup{^}{}{\wedge}-1 + (3) + (4)*eps + o (eps^2)
multivariate: + ( + (1)*alpha^-2 + (2)*alpha^-1)*eps + ( + (3)*alpha^-2 + (4)*alpha^-
\hookrightarrow1)*eps^2
exact + 1: + (1)*eps^-2 + (2)*eps^-1 + (4) + (4)*eps
exact * exact: + (1)*eps^-4 + (4)*eps^-3 + (10)*eps^-2 + (20)*eps^-1 + (25) + +
\hookrightarrow(24)*eps + (16)*eps^2
exact * truncated: + (1)*eps^-4 + (4)*eps^-3 + (10)*eps^-2 + (20)*eps^-1 + O(eps^0)
exact.at(-2):
    1
```


4.2 Deep Apply

A general concept to apply a std: : function to a nested data structure. If the applied std: :function is not void then deep_apply () returns a nested data structure of the return values. Currently secdecutil implements this for std: :vector and Series.

This concept allows, for example, the elements of a nested series to be edited without knowing the depth of the nested structure.
template<typename Tout, typename Tin, template<typename...> class Tnest>
Thest<Tout> deep_apply (Tnest<Tin> \&nest, std::function<Tout) Tin
$>\& f u n c$

Example (complex conjugate a Series):

```
#include <iostream>
#include <complex>
#include <secdecutil/series.hpp>
#include <secdecutil/deep_apply.hpp>
int main()
{
    std::function<std::complex<double>(std::complex<double>)> conjugate =
    [] (std::complex<double> element)
    {
        return std::conj(element);
    };
    secdecutil::Series<std::complex<double>> u(-1,0,{{1, 2},{3, 4}},false,"eps");
    secdecutil::Series<secdecutil::Series<std::complex<double>>> m(1,1,{{1,1,{{1,2}},
\hookrightarrowfalse,"alpha"},},false,"eps");
    std::cout << "u: " << u << std::endl;
    std::cout << "m: " << m << std::endl << std::endl;
    std::cout << "conjugated u: " << secdecutil::deep_apply(u, conjugate) <<<
\hookrightarrowstd::endl;
    std::cout << "conjugated m: " << secdecutil::deep_apply(m, conjugate) <<<
\hookrightarrowstd::endl;
}
```


Compile/Run:

```
$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example
```


Output:

```
u: + ((1, 2))*eps^-1 + ((3,4))
m: + ( + ((1,2))*alpha)*eps
conjugated u: + ((1,-2))*eps^-1 + ((3,-4))
conjugated m: + ( + ((1, -2))*alpha)*eps
```


4.3 Uncertainties

A class template which implements uncertainty propagation for uncorrelated random variables by overloads of the + , - , * and partially /. Division by UncorrelatedDeviation is not implemented as it is not always defined. It has special overloads for std: : complex<T>.

Note: Division by UncorrelatedDeviation is not implemented as this operation is not always well defined. Specifically, it is ill defined in the case that the errors are Gaussian distributed as the expectation value,

$$
\mathrm{E}\left[\frac{1}{X}\right]=\int_{-\infty}^{\infty} \frac{1}{X} p(X) \mathrm{d} X
$$

where

$$
p(X)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

is undefined in the Riemann or Lebesgue sense. The rule $\delta(a / b)=|a / b| \sqrt{(\delta a / a)^{2}+(\delta b / b)^{2}}$ can not be derived from the first principles of probability theory.

The rules implemented for real valued error propagation are:

$$
\begin{gathered}
\delta(a+b)=\sqrt{(\delta a)^{2}+(\delta b)^{2}} \\
\delta(a-b)=\sqrt{(\delta a)^{2}+(\delta b)^{2}} \\
\delta(a b)=\sqrt{(\delta a)^{2} b^{2}+(\delta b)^{2} a^{2}+(\delta a)^{2}(\delta b)^{2}}
\end{gathered}
$$

For complex numbers the above rules are implemented for the real and imaginary parts individually.

```
template<typename T>
class UncorrelatedDeviation
```


T value

The expectation value.
T uncertainty
The standard deviation.
Example:

```
#include <iostream>
#include <complex>
#include <secdecutil/uncertainties.hpp>
int main()
{
    secdecutil::UncorrelatedDeviation<double> r(1.,0.5);
    secdecutil::UncorrelatedDeviation<std::complex<double>> c({2., 3.},{0.6,0.7});
    std::cout << "r: " << r << std::endl;
    std::cout << "C: " << c << std::endl << std::endl;
    std::cout << "r.value: " << r.value << std::endl;
    std::cout << "r.uncertainty: " << r.uncertainty << std::endl;
    std::cout << "r + c: " << r + c << std::endl;
    std::cout << "r * c: " << r * c << std::endl;
    std::cout << "r / 3.0: " << r / 3. << std::endl;
    // std::cout << "1. / r: " << 1. / r << std::endl; // ERROR
    // std::cout << "C / r: " << C / r << std::endl; // ERROR
}
```


Compile/Run:

```
$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example
```

Output:

```
r: 1 +/- 0.5
c: (2,3) +/- (0.6,0.7)
r.value: 1
r.uncertainty: 0.5
r + c: (3,3) +/- (0.781025,0.7)
r*c: (2,3) +/- (1.20416,1.69189)
r/ 3.0: 0.333333 +/- 0.166667
```


4.4 Integrand Container

A class template for containing integrands. It stores the number of integration variables and the integrand as a std: :function.
This class overloads the arithmetic operators (+, $-, \star, /$).
template<typename \mathbf{T}, typename ...Args>
class IntegrandContainer
int number_of_integration_variables
The number of integration variables that the integrand depends on.
std::function<T (Args...) > integrand
The integrand function.
Example (add two IntegrandContainer and evaluate one point):

```
#include <iostream>
#include <secdecutil/integrand_container.hpp>
int main()
{
    using input_t = const double * const;
    using return_t = double;
    std::function<return_t(input_t)> f1 = [] (input_t x) { return 2*x[0]; };
    secdecutil::IntegrandContainer<return_t,input_t> cl(1,f1);
    std::function<return_t(input_t)> f2 = [] (input_t x) { return x[0]*x[1]; };
    secdecutil::IntegrandContainer<return_t,input_t> c2(2,f2);
    secdecutil::IntegrandContainer<return_t,input_t> c3 = c1 + c2;
    const double point[]{1.0,2.0};
    std::cout << "c1.number_of_integration_variables: " << cl.number_of_integration_
\hookrightarrowvariables << std::endl;
    std::cout << "c2.number_of_integration_variables: " << c2.number_of_integration_
\hookrightarrowvariables << std::endl << std::endl;
    std::cout << "c3.number_of_integration_variables: " << c3.number_of_integration_
\hookrightarrowvariables << std::endl;
    std::cout << "c3.integrand(point): " << c3.integrand(point) << 隹
\hookrightarrowstd::endl;
}
```

Compile/Run:

```
$ c++ -I${SECDEC_CONTRIB}/include -std=c++11 example.cpp -o example -lm && ./example
```

Output:

```
c1.number_of_integration_variables: 1
c2.number_of_integration_variables: 2
c3.number_of_integration_variables: 2
c3.integrand(point):
```


4.5 Integrator

A base class template from which integrator implementations inherit. It defines the minimal API available for all integrators.

```
template<typename return_t, typename input_t>
class Integrator
```


bool together

(Only available if return_t is a std: :complex type) If true after each call of the function both the real and imaginary parts are passed to the underlying integrator. If false after each call of the function only the real or imaginary part is passed to the underlying integrator. For some adaptive integrators considering the real and imaginary part of a complex function separately can improve the sampling. Default: false.

UncorrelatedDeviation<return_t> integrate (const IntegrandContainer<return_t, input_t const * const $>\&$)
Integrates the Integrandcontainer and returns the value and uncertainty as an UncorrelatedDeviation.

An integrator that chooses another integrator based on the dimension of the integrand.

```
template<typename return_t, typename input_t>
class MultiIntegrator
```

Integrator<return_t, input_t> \&low_dimensional_integrator
Reference to the integrator to be used if the integrand has a lower dimension than critical_dim.

Integrator<return_t, input_t> \&high_dimensional_integrator
Reference to the integrator to be used if the integrand has dimension critical_dim or higher.
int critical_dim
The dimension below which the low_dimensional_integrator is used.

4.5.1 CQuad

For one dimensional integrals, we wrap the cquad integrator form the GNU scientifc library (gsl).

CQuad takes the following options:

- epsrel - The desired relative accuracy for the numerical evaluation. Default: 0.01.
- epsabs - The desired absolute accuracy for the numerical evaluation. Default: 1e-7.
- n - The size of the workspace. This value can only be set in the constructor. Changing this attribute of an instance is not possible. Default: 100.
- verbose - Whether or not to print status information. Default: false.
- zero_border - The minimal value an integration variable can take. Default: 0.0. (new in version 1.3)

4.5.2 Cuba

Currently we wrap the following Cuba integrators:

- Vegas
- Suave
- Divonne
- Cuhre

The Cuba integrators all implement:

- epsrel - The desired relative accuracy for the numerical evaluation. Default: 0.01.
- epsabs - The desired absolute accuracy for the numerical evaluation. Default: 1e-7.
- flags - Sets the Cuba verbosity flags. The flags=2 means that the Cuba input parameters and the result after each iteration are written to the \log file of the numerical integration. Default: 0 .
- seed - The seed used to generate random numbers for the numerical integration with Cuba. Default: 0.
- mineval - The number of evaluations which should at least be done before the numerical integrator returns a result. Default: 0 .
- maxeval - The maximal number of evaluations to be performed by the numerical integrator. Default: 1000000 .
- zero_border - The minimal value an integration variable can take. Default: 0.0. (new in version 1.3)

The available integrator specific parameters and their default values are:

Vegas	Suave	Divonne	Cuhre
nstart (1000)	nnew (1000)	key1 (2000)	key (0)
nincrease (500)	nmin (10)	key2 (1)	
nbatch (500)	flatness (25.0)	key3 (1)	
		maxpass (4)	
		border (0.0)	
		maxchisq (1.0)	
		mindeviation (0.15)	

For the description of these more specific parameters we refer to the Cuba manual.

4.5.3 Examples

Integrate Real Function with Cuba Vegas

Example:

```
#include <iostream>
#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>
int main()
{
    using input_t = const double * const;
    using return_t = double;
    secdecutil::cuba::Vegas<return_t> integrator;
    integrator.epsrel = 1e-4;
    integrator.maxeval = 1e7;
```

```
    secdecutil::IntegrandContainer<return_t,input_t> c(2, [] (input_t x) { return_
\hookrightarrowx[0]*x[1]; });
    secdecutil::UncorrelatedDeviation<return_t> result = integrator.integrate(c);
    std::cout << "result: " << result << std::endl;
}
```

Compile/Run:

```
$ c++ -I${SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++11 example.cpp -o, r
\hookrightarrowexample -lcuba -lm && ./example
```


Output:

```
result: 0.250002 +/- 2.4515e-05
```


Integrate Complex Function with Cuba Vegas

Example:

```
#include <iostream>
#include <complex>
#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/cuba.hpp>
int main()
{
    using input_t = const double * const;
    using return_t = std::complex<double>;
    secdecutil::cuba::Vegas<return_t> integrator;
    std::function<return_t(input_t)> f = [] (input_t x) { return return_t{x[0],x[1]};ь
\hookrightarrow);
    secdecutil::IntegrandContainer<return_t,input_t> c(2,f);
    integrator.together = false; // integrate real and imaginary part separatelyu
\hookrightarrow(default)
    secdecutil::UncorrelatedDeviation<return_t> result_separate = integrator.
\hookrightarrowintegrate (c);
    integrator.together = true; // integrate real and imaginary part simultaneously
    secdecutil::UncorrelatedDeviation<return_t> result_together = integrator.
\hookrightarrowintegrate (c);
    std::cout << "result_separate: " << result_separate << std::endl;
    std::cout << "result_together: " << result_together << std::endl;
}
```

Compile/Run:
\$ c++ -I\$\{SECDEC_CONTRIB\}/include -L\$\{SECDEC_CONTRIB\}/lib -std=c++11 example.cpp -o. ↔example -lcuba -lm \&\& ./example

Output:

```
result_separate: (0.499889,0.500284) +/- (0.00307225,0.00305688)
result_together: (0.499924,0.500071) +/- (0.00357737,0.00357368)
```


Integrate Real Function with Cuba Vegas or CQuad

Example:

```
#include <iostream>
#include <secdecutil/integrand_container.hpp>
#include <secdecutil/uncertainties.hpp>
#include <secdecutil/integrators/integrator.hpp>
#include <secdecutil/integrators/cuba.hpp>
#include <secdecutil/integrators/cquad.hpp>
int main()
{
    using input_base_t = double;
    using input_t = const input_base_t * const;
    using return_t = double;
    secdecutil::cuba::Vegas<return_t> vegas;
    vegas.epsrel = 1e-5;
    vegas.maxeval = 1e7;
    secdecutil::gsl::CQuad<return_t> cquad;
    cquad.epsrel = 1e-10;
    cquad.epsabs = 1e-13;
    secdecutil::MultiIntegrator<return_t,input_base_t> integrator(cquad,vegas,2);
    secdecutil::IntegrandContainer<return_t,input_t> one_dimensional(1, [] (input_t_
\hookrightarrow) { return x[0]; });
    secdecutil::IntegrandContainer<return_t,input_t> two_dimensional(2, [] (input_t_
\hookrightarrowx) { return x[0]*x[1]; });
    secdecutil::UncorrelatedDeviation<return_t> result_1d = integrator.integrate(one_
\hookrightarrowdimensional); // uses cquad
    secdecutil::UncorrelatedDeviation<return_t> result_2d = integrator.integrate(two_
\hookrightarrowdimensional); // uses vegas
    std::cout << "result_1d: " << result_1d << std::endl;
    std::cout << "result_2d: " << result_2d << std::endl;
}
```


Compile/Run:

```
$ c++ -I${SECDEC_CONTRIB}/include -L${SECDEC_CONTRIB}/lib -std=c++11 example.cpp -o, 
\hookrightarrowexample -lcuba -lgsl -lgslcblas -lm && ./example
```


Output:

```
result_1d: 0.5 +/- 9.58209e-17
result_2d: 0.25 +/- 5.28953e-06
```


chapter 5

Reference Guide

This section describes all public functions and classes in pySecDec.

5.1 Algebra

Implementation of a simple computer algebra system.

```
class pySecDec.algebra.ExponentiatedPolynomial(expolist, coeffs, exponent=1, polysym-
                        bols='x', copy=True)
```

Like Polynomial, but with a global exponent. polynomial exponent

Parameters

- expolist - iterable of iterables; The variable's powers for each term.
- coeffs - iterable; The coefficients of the polynomial.
- exponent - object, optional; The global exponent.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist=[[2,0],[1,1]] coeffs=["A",' $B "]$

- polysymbols='x' (default) <-> "A*x0** $2+B * x 0 * x 1$ "
- polysymbols=['x','y'] <-> "A*x**2 + B*x*y"
- copy - bool; Whether or not to copy the expolist, the coeffs, and the exponent.

Note: If copy is False, it is assumed that the expolist, the coeffs and the exponent have the correct type.
copy ()
Return a copy of a Polynomial or a subclass.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
simplify()
Apply the identity <something>**0 $=1$ or <something>**1 $=$ <something> or $1^{* *}$ <something> $=1$ if possible, otherwise call the simplify method of the base class. Convert exponent to symbol if possible.

```
pySecDec.algebra.Expression(expression, polysymbols, follow_functions=False)
```

Convert a sympy expression to an expression in terms of this module.

Parameters

- expression - string or sympy expression; The expression to be converted
- polysymbols - iterable of strings or sympy symbols; The symbols to be stored as expolists (see Polynomial) where possible.
- follow_functions - bool, optional (default = False); If true, return the converted expression and a list of Function that occur in the expression.
class pySecDec.algebra.Function (symbol, *arguments, **kwargs)
Symbolic function that can take care of parameter transformations. It keeps track of all taken derivatives: When derive () is called, save the multiindex of the taken derivative.

The derivative multiindices are the keys in the dictionary self.derivative_tracks. The values are lists with two elements: Its first element is the index to derive the derivative indicated by the multiindex in the second element by, in order to abtain the derivative indicated by the key:

```
>>> from pySecDec.algebra import Polynomial, Function
>>> x = Polynomial.from_expression('x', ['x','y'])
>>> y = Polynomial.from_expression('y', ['x','y'])
>>> poly = x**2*y + y**2
>>> func = Function('f', x, y)
>>> ddfuncd0d1 = func.derive(0).derive(1)
>>> func
Function(f( + (1)*x, + (1)*y), derivative_tracks = {(1, 0): [0, (0, 0)], (1, 1):七
@[1, (1, 0)]})
>>> func.derivative_tracks
{(1, 0): [0, (0, 0)], (1, 1): [1, (1, 0)]}
>>> func.compute_derivatives(poly)
{(1, 0): + (2)*x*y, (1, 1): + (2)*x}
```


Parameters

- symbol - string; The symbol to be used to represent the Function.
- arguments - arbitrarily many _Expression; The arguments of the Function.
- copy - bool; Whether or not to copy the arguments.
compute_derivatives (expression=None)
Compute all derivatives of expression that are mentioned in self.derivative_tracks. The purpose of this function is to avoid computing the same derivatives multiple times.

Parameters expression - Expression, optional; The expression to compute the derivatives of. If not provided, the derivatives are shown as in terms of the function's derivatives dfd<index>.
copy ()
Return a copy of a Function.

derive (index)

Generate the derivative by the parameter indexed index. The derivative of a function with symbol f by some index is denoted as $d f d<$ index>.

Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Simplify the arguments.
class pySecDec.algebra.Log (arg, copy=True)
The (natural) logarithm to base e (2.718281828459..). Store the expressions log (arg).

Parameters

- arg - _Expression; The argument of the logarithm.
- copy - bool; Whether or not to copy the arg.
copy ()
Return a copy of a Log.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Apply $\log (1)=0$.
class pySecDec.algebra.LogOfPolynomial (expolist, coeffs, polysymbols=' x ', copy=True)
The natural logarithm of a Polynomial.
Parameters
- expolist - iterable of iterables; The variable's powers for each term.
- coeffs - iterable; The coefficients of the polynomial.
- exponent - object, optional; The global exponent.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist=[[2,0],[1,1]] coeffs=["A",',B"]

- polysymbols=' $x^{\prime}($ default $)<->~ " A * x 0 * * 2+B * x 0 * x 1$ "
- polysymbols=['x','y'] <-> "A*x**2 + B*x*y"

derive (index)

Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
static from_expression (expression, polysymbols)
Alternative constructor. Construct the LOgOfPOIynomial from an algebraic expression.

Parameters

- expression - string or sympy expression; The algebraic representation of the polynomial, e.g. " $5 * x 1^{*} * 2+\mathrm{x} 1 * \mathrm{x} 2$ "
- polysymbols - iterable of strings or sympy symbols; The symbols to be interpreted as the polynomial variables, e.g. "['x1','x2']".
simplify()
Apply the identity $\log (1)=0$, otherwise call the simplify method of the base class.
class pySecDec.algebra.Polynomial (expolist, coeffs, polysymbols='x', copy=True)
Container class for polynomials. Store a polynomial as list of lists counting the powers of the variables. For example the polynomial " $\mathrm{x} 1 * * 2+\mathrm{x} 1 * \mathrm{x} 2$ " is stored as $[[2,0],[1,1]]$.

Coefficients are stored in a separate list of strings, e.g. "A*x0**2 + B*x0*x1" <-> [[2,0],[1,1]] and ["A","B"].

Parameters

- expolist - iterable of iterables; The variable's powers for each term.

Hint: Negative powers are allowed.

- coeffs - 1d array-like with numerical or sympy-symbolic (see http://www.sympy.org/) content, e.g. [x,1,2] where x is a sympy symbol; The coefficients of the polynomial.
- polysymbols - iterable or string, optional; The symbols to be used for the polynomial variables when converted to string. If a string is passed, the variables will be consecutively numbered.

For example: expolist $=[[2,0],[1,1]]$ coeffs $=[" A ", ’ B "]$

- polysymbols=' x ' (default) <-> "A*x0** $2+\mathrm{B} * \mathrm{x} 0 * \mathrm{x} 1$ "
- polysymbols $=\left[{ }^{\prime} x^{\prime}, ' y\right.$ '] <-> "A* $x * 2+B * x * y "$
- copy - bool; Whether or not to copy the expolist and the coeffs.

Note: If copy is False, it is assumed that the expolist and the coeffs have the correct type.
becomes_zero_for (zero_params)
Return True if the polynomial becomes zero if the parameters passed in zero_params are set to zero.
Otherwise, return False.
Parameters zero_params - iterable of integers; The indices of the parameters to be checked.
copy ()
Return a copy of a Polynomial or a subclass.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
static from_expression (expression, polysymbols)
Alternative constructor. Construct the polynomial from an algebraic expression.

Parameters

- expression - string or sympy expression; The algebraic representation of the polynomial, e.g. " $5 * x 1 * * 2+x 1 * x 2$ "
- polysymbols - iterable of strings or sympy symbols; The symbols to be interpreted as the polynomial variables, e.g. "['x1','x2']".
has_constant_term (indices=None)
Return True if the polynomial can be written as:

$$
\text { const }+\ldots
$$

Otherwise, return False.
Parameters indices - list of integers or None; The indices of the polysymbols to consider. If
None (default) all indices are taken into account.
replace $($ index, value, remove $=$ False $)$
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify (deep=True)
Combine terms that have the same exponents of the variables.
Parameters deep - bool; If True (default) call the simplify method of the coefficients if they are of type _Expression.
class pySecDec.algebra.Pow (base, exponent, copy=True)
Exponential. Store two expressions A and B to be interpreted as the exponential $A * * B$.
Parameters
- base - _Expression; The base A of the exponential.
- exponent - _Expression; The exponent B.
- copy - bool; Whether or not to copy base and exponent.
copy ()
Return a copy of a POW.
derive (index)
Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Apply the identity <something>**0 $=1$ or <something>**1 $=$ <something> or $1^{* *}$ <something> $=1$ if possible. Convert to ExponentiatedPolynomial or Polynomial if possible.
class pySecDec.algebra.Product (*factors, **kwargs)
Product of polynomials. Store one or polynomials p_{i} to be interpreted as product $\prod_{i} p_{i}$.

Parameters

- factors - arbitrarily many instances of Polynomial; The factors p_{i}.
- copy - bool; Whether or not to copy the factors.
p_{i} can be accessed with self.factors[i].
Example:

```
p = Product (p0, p1)
p0 = p.factors[0]
p1 = p.factors[1]
```

copy ()
Return a copy of a Product.

```
derive(index)
```

Generate the derivative by the parameter indexed index. Return an instance of the optimized ProductRule.

Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
If one or more of self.factors is a Product, replace it by its factors. If only one factor is present, return that factor. Remove factors of one and zero.
class pySecDec.algebra.ProductRule(*expressions, **kwargs)
Store an expression of the form

$$
\sum_{i} c_{i} \prod_{j} \prod_{k}\left(\frac{d}{d x_{k}}\right)^{n_{i j k}} f_{j}\left(\left\{x_{k}\right\}\right)
$$

The main reason for introducing this class is a speedup when calculating derivatives. In particular, this class implements simplifications such that the number of terms grows less than exponentially (scaling of the naive implementation of the product rule) with the number of derivatives.

Parameters expressions - arbitrarily many expressions; The expressions f_{j}.
copy ()
Return a copy of a ProductRule.

derive (index)

Generate the derivative by the parameter indexed index. Note that this class is particularly designed to hold derivatives of a product.

Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression -_Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
Combine terms that have the same derivatives of the expressions.
to_sum ()
Convert the ProductRule to Sum
class pySecDec.algebra.Sum (*summands, **kwargs)
Sum of polynomials. Store one or polynomials p_{i} to be interpreted as product $\sum_{i} p_{i}$.

Parameters

- summands - arbitrarily many instances of Polynomial; The summands p_{i}.
- copy - bool; Whether or not to copy the summands.
p_{i} can be accessed with self. summands [i].
Example:

```
p = Sum(p0, p1)
p0 = p.summands[0]
p1 = p.summands[1]
```

copy ()
Return a copy of a Sum.
derive (index)

Generate the derivative by the parameter indexed index.
Parameters index - integer; The index of the paramater to derive by.
replace (index, value, remove $=$ False)
Replace a variable in an expression by a number or a symbol. The entries in all expolist of the underlying Polynomial are set to zero. The coefficients are modified according to value and the powers indicated in the expolist.

Parameters

- expression - _Expression; The expression to replace the variable.
- index - integer; The index of the variable to be replaced.
- value - number or sympy expression; The value to insert for the chosen variable.
- remove - bool; Whether or not to remove the replaced parameter from the parameters in the expression.
simplify()
If one or more of self. summands is a Sum, replace it by its summands. If only one summand is present, return that summand. Remove zero from sums.

5.2 Loop Integral

This module defines routines to Feynman parametrize a loop integral and build a c++ package that numerically integrates over the sector decomposed integrand.

5.2.1 Feynman Parametrization

Routines to Feynman parametrize a loop integral.
class pySecDec.loop_integral.LoopIntegral (*args, **kargs)
Container class for loop integrals. The main purpose of this class is to convert a loop integral from the momentum representation to the Feynman parameter representation.

It is possible to provide either the graph of the loop integrals as adjacency list, or the propagators.
The Feynman parametrized integral is a product of the following expressions that are accessible as member properties:

- self.regulator ** self.regulator_power
- self.Gamma_factor
- self.exponentiated_U
- self.exponentiated_F
- self.numerator
- self.measure,
where self is an instance of either LoopIntegralFromGraph or LoopIntegralFromPropagators.
When inverse propagators or nonnumerical propagator powers are present (see powerlist), some Feynman_parameters drop out of the integral. The variables to integrate over can be accessed as self. integration_variables.

While self. numerator describes the numerator polynomial generated by tensor numerators or inverse propagators, self.measure contains the monomial associated with the integration measure in the case of propagator powers $\neq 1$. The Gamma functions in the denominator belonging to the measure, however, are multiplied to the overall Gamma factor given by self. Gamma_factor.
Changed in version 1.2.2: The overall sign $(-1)^{N_{\nu}}$ is included in self.Gamma_factor.

See also:

- input as graph: LoopIntegralFromGraph
- input as list of propagators: LoopIntegralFromPropagators
class pySecDec.loop_integral.LoopIntegralFromGraph (internal_lines, external_lines, replacement_rules $=[], \quad$ Feynman_parameters $=$ ' x ', regulator $=$ 'eps', regulator_power $=0$, dimensionality $=$ '4-2*eps', powerlist=[])
Construct the Feynman parametrization of a loop integral from the graph using the cut construction method.
Example:

```
>>> from pySecDec.loop_integral import *
>> internal__lines = [ ['0', [1,2]], ['m',[2,3]], ['m', [3,1]]]
>>> external_lines = [['p1',1],['p2',2],['-p12', 3]]
>>> li = LoopIntegralFromGraph(internal_lines, external_lines)
>>> li.exponentiated_U
( + (1)*x0 + (1)*x1 + (1)*x2)**(2*eps - 1)
>>> li.exponentiated_F
( + (m**2)*x2**2 + (2*m**2 - p12**2)*x1*x2 + (m**2)*x1**2 + (m**2 - p1**2)*x0*x2-
\hookrightarrow+(m**2-p2**2)*x0*x1)**(-eps - 1)
```


Parameters

- internal_lines - iterable of internal line specification, consisting of string or sympy expression for mass and a pair of strings or numbers for the vertices, e.g. [['m', [1,2]], ['0', $[2,1]]]$.
- external_lines - iterable of external line specification, consisting of string or sympy expression for external momentum and a strings or number for the vertex, e.g. [['p1', 1], ['p2', 2]].
- replacement_rules - iterable of iterables with two strings or sympy expressions, optional; Symbolic replacements to be made for the external momenta, e.g. definition of

Mandelstam variables. Example: [('p1*p2', 's'), ('p1**2', 0)] where p1 and p2 are external momenta. It is also possible to specify vector replacements, for example [('p4', '$\left.\left.(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3)^{\prime}\right)\right]$.

- Feynman_parameters - iterable or string, optional; The symbols to be used for the Feynman parameters. If a string is passed, the Feynman parameter variables will be consecutively numbered starting from zero.
- regulator - string or sympy symbol, optional; The symbol to be used for the dimensional regulator (typically ϵ or ϵ_{D})

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

- regulator_power - integer; An additional factor to the numerator.

See also:
LoopIntegral

- dimensionality - string or sympy expression, optional; The dimensionality; typically $4-2 \epsilon$, which is the default value.
- powerlist - iterable, optional; The powers of the propergators, possibly dependent on the regulator. In case of negative powers, the numerator is constructed by taking derivatives with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref. $[B H J+15]$. If negative powers are combined with a tensor numerator, the derivatives act on the Feynman-parametrized tensor numerator as well, which leads to a consistent result.
class pySecDec.loop_integral.LoopIntegralFromPropagators (propagators,

$$
\begin{aligned}
& \text { loop_momenta, ex- } \\
& \text { ternal_momenta=[], } \\
& \text { Lorentz_indices=[], } \\
& \text { numerator }=1, \quad \text { met- } \\
& \text { ric_tensor='g', replace- } \\
& \text { ment_rules=[], Feyn- } \\
& \text { man_parameters='x', } \\
& \text { regulator='eps', reg- } \\
& \text { ulator_power=0, } \\
& \text { dimensionality='4- } \\
& 2 * \text { eps', powerlist=[]) }
\end{aligned}
$$

Construct the Feynman parametrization of a loop integral from the algebraic momentum representation.
See also:
[Hei08], [GKR+11]
Example:

```
>>> from pySecDec.loop_integral import *
>>> propagators = ['k**2', '(k - p)**2']
>>> loop_momenta = ['k']
>>> li = LoopIntegralFromPropagators(propagators, loop_momenta)
>>> li.exponentiated_U
( + (1)*x0 + (1)*x1)**(2*eps - 2)
>>> li.exponentiated_F
( + (-p**2)*x0*x1)**(-eps)
```

The 1st (U) and 2nd (F) Symanzik polynomials and their exponents can also be accessed independently:

```
>>> li.U
    + (1)*x0 + (1)*x1
>>> li.F
    +(-p**2)*x0*x1
>>>
>>> li.exponent_U
2*eps - 2
>>> li.exponent_F
-eps
```


Parameters

- propagators - iterable of strings or sympy expressions; The propagators, e.g. ['k1**2', '(k1-k2)**2-m1**2’].
- loop_momenta - iterable of strings or sympy expressions; The loop momenta, e.g. ['k1','k2'].
- external_momenta - iterable of strings or sympy expressions, optional; The external momenta, e.g. ['p1','p2']. Specifying the external_momenta is only required when a numerator is to be constructed.

See also:

parameter numerator

- Lorentz_indices - iterable of strings or sympy expressions, optional; Symbols to be used as Lorentz indices in the numerator.

See also:

parameter numerator

- numerator - string or sympy expression, optional; The numerator of the loop integral. Scalar products must be passed in index notation e.g. "k1(mu)*k2(mu)". The numerator should be a sum of products of exclusively: * numbers * scalar products (e.g. "p1(mu)*k1(mu)*p1(nu)*k2(nu)")* symbols (e.g. "m")

Examples:

```
- p1(mu) *k1 (mu) *p1(nu)*k2(nu) + 4*s*eps*k1 (mu) *k1 (mu)
- p1(mu)*(k1(mu) + k2(mu))*p1(nu)*k2(nu)
- p1(mu)*k1(mu)*my_function(eps)
```

Warning: All Lorentz indices (including the contracted ones and also including the numbers that have been used) must be explicitly defined using the parameter Lorentz_indices.

Warning: It is assumed that the numerator is and all its derivatives by the regulator are finite and defined if $\epsilon=0$ is inserted explicitly. In particular, if user defined functions (like in the example $\left.\mathrm{p} 1(\mathrm{mu}) * \mathrm{k} 1(\mathrm{mu}) * m y _f u n c t i o n(e p s)\right)$ appear, make sure that my_function (0) is finite.

Hint: In order to mimic a singular user defined function, use the parameter regulator_power. For example, instead of numerator $=$ gamma (eps) you could enter numerator $=$ eps_times_gamma(eps) in conjunction with regulator_power = -1 .
Hint: It is possible to use numbers as indices, for example
$p 1(m u) * p 2(m u) * k 1(n u) * k 2(n u)$

Hint: The numerator may have uncontracted indices, e.g. $k 1(\mathrm{mu}) * \mathrm{k} 2(\mathrm{nu})$.

- metric_tensor - string or sympy symbol, optional; The symbol to be used for the (Minkowski) metric tensor $g^{\mu \nu}$.
- replacement_rules - iterable of iterables with two strings or sympy expressions, optional; Symbolic replacements to be made for the external momenta, e.g. definition of Mandelstam variables. Example: [('p1*p2', 's'), ('p1**2', 0)] where p1 and p2 are external momenta. It is also possible to specify vector replacements, for example [(' p 4 ', '$\left.\left.(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3)^{\prime}\right)\right]$.
- Feynman_parameters - iterable or string, optional; The symbols to be used for the Feynman parameters. If a string is passed, the Feynman parameter variables will be consecutively numbered starting from zero.
- regulator - string or sympy symbol, optional; The symbol to be used for the dimensional regulator (typically ϵ or ϵ_{D})

Note: If you change this symbol, you have to adapt the dimensionality accordingly.

- regulator_power - integer; An additional factor to the numerator.

See also:

LoopIntegral

- dimensionality - string or sympy expression, optional; The dimensionality; typically $4-2 \epsilon$, which is the default value.
- powerlist - iterable, optional; The powers of the propergators, possibly dependent on the regulator. In case of negative powers, the numerator is constructed by taking derivatives with respect to the corresponding Feynman parameters as explained in Section 3.2.4 of Ref. [BHJ+15]. If negative powers are combined with a tensor numerator, the derivatives act on the Feynman-parametrized tensor numerator as well, which leads to a consistent result.

5.2.2 Loop Package

This module contains the function that generates a c++ package.
pySecDec.loop_integral.loop_package (name, loop_integral, requested_order, real_parameters $=[]$, complex_parameters $=[]$, contour_deformation=True, additional_prefactor=1, form_optimization_level=2, form_work_space='500M', decomposition_method='iterative', normaliz_executable='normaliz', enforce_complex=False, split=False, ibp_power_goal=-1, use_dreadnaut=False, use_Pak=True, processes=None)
Decompose, subtract and expand a Feynman parametrized loop integral. Return it as c++ package.

See also:

This function is a wrapper around pySecDec.code_writer.make_package ().

See also:

The generated library is described in Generated C++ Libraries.

Parameters

- name - string; The name of the c++ namespace and the output directory.
- loop_integral - pySecDec.loop_integral. LoopIntegral; The loop integral to be computed.
- requested_orders - integer; Compute the expansion in the regulator to this order.
- real_parameters - iterable of strings or sympy symbols, optional; Parameters to be interpreted as real numbers, e.g. Mandelstam invariants and masses.
- complex_parameters - iterable of strings or sympy symbols, optional; Parameters to be interpreted as complex numbers. To use the complex mass scheme, define the masses as complex parameters.
- contour_deformation - bool, optional; Whether or not to produce code for contour deformation. Default: True.
- additional_prefactor - string or sympy expression, optional; An additional factor to be multiplied to the loop integral. It may depend on the regulator, the real_parameters, and the complex_parameters.
- form_optimization_level - integer out of the interval [0,3], optional; The optimization level to be used in FORM. Default: 2.
- form_work_space - string, optional; The FORM WorkSpace. Default: '500M'.
- decomposition_method - string, optional; The strategy for decomposing the polynomials. The following strategies are available:
- 'iterative' (default)
- 'geometric'
- 'geometric_ku'

Note: For 'geometric' and 'geometric_ku', the third-party program "normaliz" is needed. See The Geomethod and Normaliz.

- normaliz_executable - string, optional; The command to run normaliz. normaliz is only required if decomposition_method is set to 'geometric' or 'geometric_ku'. Default: 'normaliz'
- enforce_complex - bool, optional; Whether or not the generated integrand functions should have a complex return type even though they might be purely real. The return type of the integrands is automatically complex if contour_deformation is True or if there are complex_parameters. In other cases, the calculation can typically be kept purely real. Most commonly, this flag is needed if \log (<negative real>) occurs in one of the integrand functions. However, pySecDec will suggest setting this flag to True in that case. Default: False
- split - bool, optional; Whether or not to split the integration domain in order to map singularities from 1 to 0 . Set this option to True if you have singularties when one or more integration variables are one. Default: False
- ibp_power_goal - number or iterable of number, optional; The power_goal that is forwarded to integrate_by_parts().
This option controls how the subtraction terms are generated. Setting it to -numpy.inf disables integrate_by_parts(), while 0 disables integrate_pole_part ().

See also:

To generate the subtraction terms, this function first calls integrate_by_parts () for each integration variable with the give ibp_power_goal. Then integrate_pole_part () is called.

Default:-1

- use_dreadnaut - bool or string, optional; Whether or not to use squash_symmetry_redundant_sectors_dreadnaut () to find sector symmetries. If given a string, interpret that string as the command line executable dreadnaut. If True, try $\$$ SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable \$SECDEC_CONTRIB is not set, dreadnaut. Default: False
- use_Pak - bool; Whether or not to use squash_symmetry_redundant_sectors_sort () with Pak_sort () to find sector symmetries. Default: True
- processes - integer or None, optional; The maximal number of processes to be used. If None, the number of CPUs multiprocessing.cpu_count () is used. New in version 1.3. Default: None

5.2.3 Drawing Feynman Diagrams

Use the following function to draw Feynman diagrams.

```
pySecDec.loop_integral.draw.plot_diagram(internal_lines, external_lines, filename, pow-
    erlist=None, neato='neato', extension='pdf',
    Gstart=0)
```

Draw a Feynman diagram using Graphviz (neato).
Thanks to Viktor Papara papara@mpp.mpg.de for his major contributions to this function.

Note: This function requires the command line tool neato. See also Drawing Feynman Diagrams with neato.

Warning: The target is overwritten without prompt if it exists already.

Parameters

- internal_lines - list; Adjacency list of internal lines, e.g. [['m', ['a', 4]], $[' m ',[4,5]],[' m ',[' a ', 5]],[0,[1,2]],[0,[4,1]],[0,[2,5]]]$
- external_lines - list; Adjacency list of external lines, e.g. [['p1',1],['p2',2],['p3','a']]
- filename - string; The name of the output file. The generated file gets this name plus the file extension.
- powerlist - list, optional; The powers of the propagators defined by the internal_lines.
- neato - string, default: "neato"; The shell command to call "neato".
- extension - string, default: "pdf"; The file extension. This also defines the output format.
- Gstart - nonnegative int; The is value is passed to "neato" with the "-Gstart" option. Try changing this value if the visualization looks bad.

5.3 Polytope

The polytope class as required by pySecDec.decomposition.geometric.
class pySecDec.polytope.Polytope (vertices=None, facets=None)
Representation of a polytope defined by either its vertices or its facets. Call complete_representation() to translate from one to the other representation.

Parameters

- vertices - two dimensional array; The polytope in vertex representation. Each row is interpreted as one vertex.
- facets - two dimensional array; The polytope in facet representation. Each row represents one facet F. A row in facets is interpreted as one normal vector n_{F} with additionally the constant a_{F} in the last column. The points v of the polytope obey

$$
\bigcap_{F}\left(\left\langle n_{F}, v\right\rangle+a_{F}\right) \geq 0
$$

complete_representation (normaliz='normaliz', workdir='normaliz_tmp',
keep_workdir=False)

Transform the vertex representation of a polytope to the facet representation or the other way round. Remove surplus entries in self.facets or self.vertices.

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz for installation and a list of tested versions.

Parameters

- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

- keep_workdir - bool; Whether or not to delete the workdir after execution.
vertex_incidence_lists()
Return for each vertex the list of facets it lies in (as dictonary). The keys of the output dictonary are the vertices while the values are the indices of the facets in self.facets.
pySecDec.polytope.convex_hull (*polynomials)
Calculate the convex hull of the Minkowski sum of all polynomials in the input. The algorithm sets all coefficients to one first and then only keeps terms of the polynomial product that have coefficient 1 . Return the list of these entries in the expolist of the product of all input polynomials.

Parameters polynomials - abritrarily many instances of Polynomial where all of these have an equal number of variables; The polynomials to calculate the convex hull for.
pySecDec.polytope.triangulate (cone, normaliz='normaliz', workdir='normaliz_tmp', keep_workdir=False, switch_representation=False)
Split a cone into simplicial cones; i.e. cones defined by exactly D rays where D is the dimensionality.

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz for installation and a list of tested versions.

Parameters

- cone - two dimensional array; The defining rays of the cone.
- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.

- keep_workdir - bool; Whether or not to delete the workdir after execution.
- switch_representation - bool; Whether or not to switch between facet and vertex/ray representation.

5.4 Decomposition

The core of sector decomposition. This module implements the actual decomposition routines.

5.4.1 Common

This module collects routines that are used by multiple decompition modules.
class pySecDec.decomposition.Sector (cast,other=[], Jacobian=None)
Container class for sectors that arise during the sector decomposition.

Parameters

- cast - iterable of algebra. Product or of algebra. Polynomial; The polynomials to be cast to the form <monomial> * (const $+\ldots$)
- other - iterable of algebra.Polynomial, optional; All variable transformations are applied to these polynomials but it is not attempted to achieve the form <monomial> * (const $+\ldots$)
- Jacobian - algebra.Polynomial with one term, optional; The Jacobian determinant of this sector. If not provided, the according unit monomial $\left(1^{*} \mathrm{x} 0^{\wedge} 0^{*} \mathrm{x} 1^{\wedge} 0 \ldots\right)$ is assumed.

```
pySecDec.decomposition.squash_symmetry_redundant_sectors_sort (sectors,
```

 sort_function,
 indices=None)
 Reduce a list of sectors by squashing duplicates with equal integral.
If two sectors only differ by a permutation of the polysymbols (to be interpreted as integration variables over some inteval), then the two sectors integrate to the same value. Thus we can drop one of them and count the other twice. The multiple counting of a sector is accounted for by increasing the coefficient of the Jacobian by one.

Equivalence up to permutation is established by applying the sort_function to each sector, this brings them into a canonical form. Sectors with identical canonical forms differ only by a permutation.

Note: whether all symmetries are found depends on the choice of sortfunction. The sort function pySecDec.matrix_sort.Pak_sort () should find all symmetries whilst the sort functions pySecDec. matrix_sort.iterative_sort() and pySecDec.matrix_sort.light_Pak_sort() are faster but do not identify all symmetries.

See also: squash_symmetry_redundant_sectors_dreadnaut ()
Example:

```
>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition import Sector
>>> from pySecDec.decomposition import squash_symmetry_redundant_sectors_sort
>>> from pySecDec.matrix_sort import Pak_sort
>>>
>>> poly = Polynomial([(0,1),(1,0)], ['a','b'])
>>> swap = Polynomial([(1,0), (0,1)], ['a','b'])
>>> Jacobian_poly = Polynomial([(1,0)], [3]) # three
>>> Jacobian_swap = Polynomial([(0,1)], [5]) # five
>>> sectors = (
... Sector([poly],Jacobian=Jacobian_poly),
... Sector([swap],Jacobian=Jacobian_swap)
... )
>>>
>>> reduced_sectors = squash_symmetry_redundant_sectors_sort(sectors,
... Pak_sort)
>>> len(reduced_sectors) # symmetry x0 <--> x1
1
>>> # The Jacobians are added together to account
>>> # for the double counting of the sector.
>>> reduced_sectors[0].Jacobian
    + (8)*x0
```


Parameters

- sectors - iterable of Sector; the sectors to be reduced.
- sort_function - pySecDec.matrix_sort.iterative_sort(), pySecDec.matrix_sort.light_Pak_sort(), or pySecDec.matrix_sort. Pak_sort (); The function to be used for finding a canonical form of the sectors.
- indices - iterable of integers, optional; The indices of the variables to consider. If not provided, all indices are taken into account.
pySecDec.decomposition.squash_symmetry_redundant_sectors_dreadnaut (sectors, in-
dices $=$ None, dread-
naut= 'dreadnaut', workdir='dreadnaut_tmp', keep_workdir=False)
Reduce a list of sectors by squashing duplicates with equal integral.
Each Sector is converted to a Polynomial which is represented as a graph following the example of $[M P+14]$ (v2.6 Figure 7, Isotopy of matrices).

We first multiply each polynomial in the sector by a unique tag then sum the polynomials of the sector, this converts a sector to a polynomial. Next, we convert the expolist of the resulting polynomial to a graph where each unique exponent in the expolist is considered to be a different symbol. Each unique coefficient in the polynomial's coeffs is assigned a vertex and connected to the row vertex of any term it multiplies. The external program dreadnaut is then used to bring the graph into a canonical form and provide a hash. Sectors with equivalent hashes may be identical, their canonical graphs are compared and if they are identical the sectors are combined.

Note: This function calls the command line executable of dreadnaut [MP+14]. It has been tested with dreadnaut version nauty 26 r7.

See also: squash_symmetry_redundant_sectors_sort()

Parameters

- sectors - iterable of Sector; the sectors to be reduced.
- indices - iterable of integers, optional; The indices of the variables to consider. If not provided, all indices are taken into account.
- dreadnaut - string; The shell command to run dreadnaut.
- workdir - string; The directory for the communication with dreadnaut. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with dreadnaut is done via files.

- keep_workdir - bool; Whether or not to delete the workdir after execution.

5.4.2 Iterative

The iterative sector decomposition routines.

```
exception pySecDec.decomposition.iterative.EndOfDecomposition
    This exception is raised if the function iteration_step () is called although the sector is already in standard
    form.
pySecDec.decomposition.iterative.find_singular_set(sector,indices=None)
Function within the iterative sector decomposition procedure which heuristically chooses an optimal decom-
```

position set. The strategy was introduced in arXiv:hep-ph/0004013 [BHOO] and is described in 4.2.2 of arXiv: 1410.7939 [Bor14]. Return a list of indices.

Parameters

- sector - Sector; The sector to be decomposed.
- indices - iterable of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.

pySecDec.decomposition.iterative.iteration_step (sector, indices=None)

Run a single step of the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [Hei08]. Return an iterator of Sector - the arising subsectors.

Parameters

- sector - Sector; The sector to be decomposed.
- indices - iterable of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.
pySecDec.decomposition.iterative.iterative_decomposition (sector, indices=None)
Run the iterative sector decomposition as described in chapter 3.2 (part II) of arXiv:0803.4177v2 [Hei08]. Return an iterator of Sector - the arising subsectors.

Parameters

- sector - Sector; The sector to be decomposed.
- indices - iterable of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.
pySecDec.decomposition.iterative.primary_decomposition(sector, indices=None)
Perform the primary decomposition as described in chapter 3.2 (part I) of arXiv:0803.4177v2 [Hei08]. Return a list of Sector - the primary sectors. For N Feynman parameters, there are N primary sectors where the i-th Feynman parameter is set to l in sector i.

See also:

primary_decomposition_polynomial()

Parameters

- sector - Sector; The container holding the polynomials (typically U and F) to eliminate the Dirac delta from.
- indices - iterable of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.

```
pySecDec.decomposition.iterative.primary_decomposition_polynomial(polynomial,
                                    in-
                                    dices=None)
```

Perform the primary decomposition on a single polynomial.

See also:

primary_decomposition()

Parameters

- polynomial - algebra.Polynomial; The polynomial to eliminate the Dirac delta from.
- indices - iterable of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.
pySecDec.decomposition.iterative.remap_parameters (singular_parameters, Jacobian, *polynomials)
Remap the Feynman parameters according to eq. (16) of arXiv:0803.4177v2 [Hei08]. The parameter whose index comes first in singular_parameters is kept fix.

The remapping is done in place; i.e. the polynomials are NOT copied.

Parameters

- singular_parameters - list of integers; The indices α_{r} such that at least one of polynomials becomes zero if all $t_{\alpha_{r}} \rightarrow 0$.
- Jacobian - Polynomial; The Jacobian determinant is multiplied to this polynomial.
- polynomials - abritrarily many instances of algebra.Polynomial where all of these have an equal number of variables; The polynomials of Feynman parameters to be remapped. These are typically F and U.

Example:

```
remap_parameters([1,2], Jacobian, F, U)
```


5.4.3 Geometric

The geometric sector decomposition routines.

```
pySecDec.decomposition.geometric.Cheng_Wu(sector,index=-1)
```

Replace one Feynman parameter by one. This means integrating out the Dirac delta according to the Cheng-Wu theorem.

Parameters

- sector - Sector; The container holding the polynomials (typically U and F) to eliminate the Dirac delta from.
- index - integer, optional; The index of the Feynman parameter to eliminate. Default: -1 (the last Feynman parameter)
pySecDec.decomposition.geometric.generate_fan(*polynomials)
Calculate the fan of the polynomials in the input. The rays of a cone are given by the exponent vectors after factoring out a monomial together with the standard basis vectors. Each choice of factored out monomials gives a different cone. Only full ($N-$) dimensional cones in $R_{\geq 0}^{N}$ need to be considered.

Parameters polynomials - abritrarily many instances of Polynomial where all of these have an equal number of variables; The polynomials to calculate the fan for.
pySecDec.decomposition.geometric.geometric_decomposition(sector, indices=None, normaliz='normaliz', workdir='normaliz_tmp')
Run the sector decomposition using the geomethod as described in [BHJ+15].

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz for installation and a list of tested versions.

Parameters

- sector - Sector; The sector to be decomposed.
- indices - list of integers or None; The indices of the parameters to be considered as integration variables. By default (indices=None), all parameters are considered as integration variables.
- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.
pySecDec.decomposition.geometric.geometric_decomposition_ku(sector, indices=None, normaliz='normaliz', workdir='normaliz_tmp')
Run the sector decomposition using the original geometric decomposition strategy by Kaneko and Ueda as described in [KU10].

Note: This function calls the command line executable of normaliz [BIR]. See The Geomethod and Normaliz for installation and a list of tested versions.

Parameters

- sector - Sector; The sector to be decomposed.
- indices - list of integers or None; The indices of the parameters to be considered as integration variables. By default (indices $=$ None), all parameters are considered as integration variables.
- normaliz - string; The shell command to run normaliz.
- workdir - string; The directory for the communication with normaliz. A directory with the specified name will be created in the current working directory. If the specified directory name already exists, an OSError is raised.

Note: The communication with normaliz is done via files.
pySecDec.decomposition.geometric.transform_variables (polynomial, transformation, polysymbols='y')
Transform the parameters x_{i} of a pySecDec.algebra.Polynomial,

$$
x_{i} \rightarrow \prod_{j} x_{j}^{T_{i j}}
$$

, where $T_{i j}$ is the transformation matrix.

Parameters

- polynomial - pySecDec.algebra.Polynomial; The polynomial to transform the variables in.
- transformation - two dimensional array; The transformation matrix $T_{i j}$.
- polysymbols - string or iterable of strings; The symbols for the new variables. This argument is passed to the default constructor of pySecDec.algebra.Polynomial. Refer to the documentation of pySecDec.algebra.Polynomial for further details.

5.4.4 Splitting

Routines to split the integration between 0 and 1 . This maps singularities from 1 to 0 .
pySecDec.decomposition.splitting.find_singular_sets_at_one (polynomial)
Find all possible sets of parameters such that the polynomial's constant term vanishes if these parameters are set to one.

Example:

```
>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition.splitting import find_singular_sets_at_one
>>> polysymbols = ['x0', 'xl']
>>> poly = Polynomial.from_expression('1 - 10*x0 - x1', polysymbols)
>>> find_singular_sets_at_one(poly)
[(1,)]
```

Parameters polynomial - Polynomial; The polynomial to search in.
pySecDec.decomposition.splitting.remap_one_to_zero(polynomial, *indices)
Apply the transformation $x \rightarrow 1-x$ to polynomial for the parameters of the given indices.

Parameters

- polynomial - Polynomial; The polynomial to apply the transformation to.
- indices - arbitrarily many int; The indices of the polynomial.polysymbols to apply the transformation to.

Example:

```
>>> from pySecDec.algebra import Polynomial
>>> from pySecDec.decomposition.splitting import remap_one_to_zero
>>> polysymbols = ['x0']
>>> polynomial = Polynomial.from_expression('x0', polysymbols)
>>> remap_one_to_zero(polynomial, 0)
    +(1) + (-1)*x0
```

pySecDec.decomposition.splitting.split (sector, seed, *indices)
Split the integration interval $[0,1]$ for the parameters given by indices. The splitting point is fixed using numpy's random number generator.

Return an iterator of Sector - the arising subsectors.
Parameters sector - Sector; The sector to be split.
:param seed; integer; The seed for the random number generator that is used to fix the splitting point.

Parameters indices - arbitrarily many integers; The indices of the variables to be split.
pySecDec.decomposition.splitting.split_singular(sector, seed, indices=[])
Split the integration interval $[0,1]$ for the parameters that can lead to singularities at one for the polynomials in sector.cast.

Return an iterator of Sector - the arising subsectors.

Parameters

- sector - Sector; The sector to be split.
- seed - integer; The seed for the random number generator that is used to fix the splitting point.
- indices - iterables of integers; The indices of the variables to be split if required. An empty iterator means that all variables may potentially be split.

5.5 Matrix Sort

Algorithms to sort a matrix when column and row permutations are allowed.
pySecDec.matrix_sort.Pak_sort (matrix, *indices)
Inplace modify the matrix to some canonical ordering, when permutations of rows and columns are allowed.
The indices parameter can contain a list of lists of column indices. Only the columns present in the same list are swapped with each other.

The implementation of this function is described in chapter 2 of [Pakll].

Note: If not all indices are considered the resulting matrix may not be canonical.

See also:

iterative_sort(), light_Pak_sort()

Parameters

- matrix-2D array-like; The matrix to be canonicalized.
- indices - arbitrarily many iterables of non-negative integers; The groups of columns to permute. Default: range (1,matrix.shape [1])
pySecDec.matrix_sort.iterative_sort (matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are allowed.

Note: This function may result in different orderings depending on the initial ordering.

See also:

```
Pak_sort(), light_Pak_sort()
```

Parameters matrix-2D array-like; The matrix to be canonicalized.
pySecDec.matrix_sort.light_Pak_sort (matrix)
Inplace modify the matrix to some ordering, when permutations of rows and columns (excluding the first) are allowed. The implementation of this function is described in chapter 2 of [Pak11]. This function implements a lightweight version: In step (v), we only consider one, not all table copies with the minimized second column.

Note: This function may result in different orderings depending on the initial ordering.

See also:

```
iterative_sort(), Pak_sort()
```

Parameters matrix-2D array-like; The matrix to be canonicalized.

5.6 Subtraction

Routines to isolate the divergencies in an ϵ expansion.
pySecDec.subtraction.integrate_by_parts (polyprod, power_goals, indices)
Repeatedly apply integration by parts,
$\int_{0}^{1} d t_{j} t_{j}^{\left(a_{j}-b_{j} \epsilon_{1}-c \epsilon_{2}+\ldots\right)} \mathcal{I}\left(t_{j},\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)=\frac{1}{a_{j}+1-b_{j} \epsilon_{1}-c \epsilon_{2}-\ldots}\left(\mathcal{I}\left(1,\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)-\int_{0}^{1} d t_{j} t_{j}^{\left(a_{j}+1-b_{j} \epsilon_{1}-c \epsilon_{2}+\right.}\right.$
, where \mathcal{I}^{\prime} denotes the derivative of \mathcal{I} with respect to t_{j}. The iteration stops, when $a_{j}>=$ power_goal_ j.

See also:

This function provides an alternative to integrate_pole_part ().

Parameters

- polyprod-algebra.Product of the form <product of <monomial>**(a_j $+\ldots.)>$ * <regulator poles of cal_I> * <cal_I>; The input product as decribed above. The <product of <monomial>** $\left(\mathrm{a}_{-} \mathrm{j}+\ldots\right)>$ should be a pySecDec.algebra.Product of <monomial>**(a_j + ...). as described below. The <monomial>** $(\mathrm{a} \mathfrak{j}+\ldots)$ should be an pySecDec.algebra. ExponentiatedPolynomial with exponent being a Polynomial of the regulators $\epsilon_{1}, \epsilon_{2}, \ldots$. Although no dependence on the Feynman parameters is expected in the exponent, the polynomial variables should be the Feynman parameters and the regulators. The constant term of the exponent should be numerical. The polynomial variables of monomial and the other factors (interpreted as \mathcal{I}) are interpreted as the Feynman parameters and the epsilon regulators. Make sure that the last factor ($\left\langle\mathrm{cal} _I\right\rangle$) is defined and finite for $\epsilon=0$. All poles for $\epsilon \rightarrow 0$ should be made explicit by putting them into <regulator poles of cal_I> as pySecDec.algebra.Pow with exponent $=-1$ and the base of type pySecDec.algebra.Polynomial.
- power_goals - number or iterable of numbers, e.g. float, integer, ...; The stopping criterion for the iteration.
- indices - iterable of integers; The index/indices of the parameter(s) to partially integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. Each returned list element has the same structure as the input polyprod.
pySecDec.subtraction.integrate_pole_part (polyprod, *indices)
Transform an integral of the form

$$
\int_{0}^{1} d t_{j} t_{j}^{\left(a-b \epsilon_{1}-c \epsilon_{2}+\ldots\right)} \mathcal{I}\left(t_{j},\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)
$$

into the form

$$
\sum_{p=0}^{|a|-1} \frac{1}{a+p+1-b \epsilon_{1}-c \epsilon_{2}-\ldots} \frac{\mathcal{I}^{(p)}\left(0,\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)}{p!}+\int_{0}^{1} d t_{j} t_{j}^{\left(a-b \epsilon_{1}-c \epsilon_{2}+\ldots\right)} R\left(t_{j},\left\{t_{i \neq j}\right\}, \epsilon_{1}, \epsilon_{2}, \ldots\right)
$$

, where $\mathcal{I}^{(p)}$ denotes the p-th derivative of \mathcal{I} with respect to t_{j}. The equations above are to be understood schematically.

See also:

This function implements the transformation from equation (19) to (21) as described in arXiv:0803.4177v2 [Hei08].

Parameters

- polyprod-algebra.Product of the form <product of <monomial>**(a_j $+\ldots.)>$ * <regulator poles of cal_I> * <cal_I>; The input product as decribed above. The <product of <monomial>**(a_j + ...)> should be a pySecDec.algebra.Product of <monomial>**($\left.\mathfrak{a} _j+\ldots\right)$. as described below. The <monomial>**(a_j $+\ldots$) should be an pySecDec.algebra. ExponentiatedPolynomial with exponent being a Polynomial of the regulators $\epsilon_{1}, \epsilon_{2}, \ldots$. Although no dependence on the Feynman parameters is expected in the exponent, the polynomial variables should be the Feynman parameters and the regulators. The constant term of the exponent should be numerical. The polynomial variables of monomial and the other factors (interpreted as \mathcal{I}) are interpreted as the Feynman parameters and the epsilon regulators. Make sure that the last factor ($\left\langle\mathrm{cal} _I\right\rangle$) is defined and finite for $\epsilon=0$. All poles for $\epsilon \rightarrow 0$ should be made explicit by putting them into <regulator poles of cal_I> as pySecDec.algebra.Pow with exponent $=-1$ and the base of type pySecDec.algebra.Polynomial.
- indices - arbitrarily many integers; The index/indices of the parameter(s) to partially integrate. j in the formulae above.

Return the pole part and the numerically integrable remainder as a list. That is the sum and the integrand of equation (21) in arXiv:0803.4177v2 [Hei08]. Each returned list element has the same structure as the input polyprod.

pySecDec.subtraction.pole_structure (monomial_product, *indices)

Return a list of the unregulated exponents of the parameters specified by indices in monomial_product.

Parameters

- monomial_product-pySecDec.algebra.ExponentiatedPolynomial with exponent being a Polynomial; The monomials of the subtraction to extract the pole structure from.
- indices - arbitrarily many integers; The index/indices of the parameter(s) to partially investigate.

5.7 Expansion

Routines to series expand singular and nonsingular expressions.
exception pySecDec.expansion.OrderError
This exception is raised if an expansion to a lower than the lowest order of an expression is requested.
pySecDec.expansion.expand_Taylor (expression, indices, orders)
Series/Taylor expand a nonsingular expression around zero.
Return a algebra.Polynomial-the series expansion.

Parameters

- expression - an expression composed of the types defined in the module algebra; The expression to be series expanded.
- indices - integer or iterable of integers; The indices of the parameters to expand. The ordering of the indices defines the ordering of the expansion.
- order - integer or iterable of integers; The order to which the expansion is to be calculated.
pySecDec.expansion.expand_singular (product, indices, orders)
Series expand a potentially singular expression of the form

$$
\frac{a_{N} \epsilon_{0}+b_{N} \epsilon_{1}+\ldots}{a_{D} \epsilon_{0}+b_{D} \epsilon_{1}+\ldots}
$$

Return a algebra.Polynomial-the series expansion.

See also:

To expand more general expressions use expand_sympy ().

Parameters

- product - algebra.Product with factors of the form <polynomial> and <polynomial> ** -1 ; The expression to be series expanded.
- indices - integer or iterable of integers; The indices of the parameters to expand. The ordering of the indices defines the ordering of the expansion.
- order - integer or iterable of integers; The order to which the expansion is to be calculated.
pySecDec.expansion.expand_sympy (expression, variables, orders)
Expand a sympy expression in the variables to given orders. Return the expansion as nested pySecDec. algebra.Polynomial.

See also:

This function is a generalization of expand_singular().

Parameters

- expression - string or sympy expression; The expression to be expanded
- variables - iterable of strings or sympy symbols; The variables to expand the expression in.
- orders - iterable of integers; The orders to expand to.

5.8 Code Writer

This module collects routines to create a c++ library.

5.8.1 Make Package

This is the main function of pySecDec.
pySecDec.code_writer.make_package (name, integration_variables, regulators, requested_orders, polynomials_to_decompose, polynomial_names=[], other_polynomials $=[], \quad$ prefactor $=1, \quad$ remainder_expression $=1, \quad$ functions $=[]$, real_parameters $=[]$, complex_parameters=[], form_optimization_level=2, form_work_space='500M', form_insertion_depth=5, contour_deformation_polynomial=None, positive_polynomials=[], decomposition_method='iterative_no_primary', normaliz_executable='normaliz', enforce_complex=False, split=False, ibp_power_goal=-1, use_dreadnaut=False, use_Pak=True, processes=None)
Decompose, subtract and expand an expression. Return it as c++ package.

See also:

In order to decompose a loop integral, use the function pySecDec.loop_integral. loop_package ().

See also:

The generated library is described in Generated $C++$ Libraries.

Parameters

- name - string; The name of the c++ namepace and the output directory.
- integration_variables - iterable of strings or sympy symbols; The variables that are to be integrated from 0 to 1 .
- regulators - iterable of strings or sympy symbols; The UV/IR regulators of the integral.
- requested_orders - iterable of integers; Compute the expansion in the regulators to these orders.
- polynomials_to_decompose - iterable of strings or sympy expressions or pySecDec.algebra.ExponentiatedPolynomial or pySecDec.algebra. Polynomial; The polynomials to be decomposed.
- polynomial_names - iterable of strings; Assign symbols for the polynomials_to_decompose. These can be referenced in the other_polynomials; see other_polynomials for details.
- other_polynomials - iterable of strings or sympy expressions or pySecDec. algebra.ExponentiatedPolynomial or pySecDec.algebra.Polynomial; Additional polynomials where no decomposition is attempted. The symbols defined in polynomial_names can be used to reference the polynomials_to_decompose. This is particularly useful when computing loop integrals where the "numerator" can depend on the first and second Symanzik polynomials.
Example (1-loop bubble with numerator):

```
>>> polynomials_to_decompose = ["(x0 + x1)**(2*eps - 4)",
\cdots.. "(-p**2*x0*x1)**(-eps))"]
>>> polynomial_names = ["U", "F"]
>>> other_polynomials = [""" (eps - 1)*s*U**2
... + (eps - 2)*F
```

(continues on next page)

See also:

pySecDec.loop_integral
Note that the polynomial_names refer to the polynomials_to_decompose without their exponents.

- prefactor - string or sympy expression, optional; A factor that does not depend on the integration variables.
- remainder_expression - string or sympy expression or pySecDec.algebra. _Expression, optional; An additional factor.

Dummy function must be provided with all arguments, e.g. remainder_expression='exp (eps) $* f(x 0, x 1)$ '. In addition, all dummy function must be listed in functions.

- functions - iterable of strings or sympy symbols, optional; Function symbols occuring in remainder_expression, e.g. '‘['f']' '.

Note: Only user-defined functions that are provided as c++-callable code should be mentioned here. Listing basic mathematical functions (e.g. log, pow, exp, sqrt,...) is not required and considered an error to avoid name conflicts.

Note: The power function pow and the logarithm log use the nonstandard continuation with an infinitesimal negative imaginary part on the negative real axis (e.g. $\log (-1)=$ -i*pi).

- real_parameters - iterable of strings or sympy symbols, optional; Symbols to be interpreted as real variables.
- complex_parameters - iterable of strings or sympy symbols, optional; Symbols to be interpreted as complex variables.
- form_optimization_level - integer out of the interval [0,3], optional; The optimization level to be used in FORM. Default: 2.
- form_work_space - string, optional; The FORM WorkSpace. Default: '500M'.
- form_insertion_depth - nonnegative integer, optional; How deep FORM should try to resolve nested function calls. Default: 5 .
- contour_deformation_polynomial - string or sympy symbol, optional; The name of the polynomial in polynomial_names that is to be continued to the complex plane according to a $-i \delta$ prescription. For loop integrals, this is the second Symanzik polynomial F. If not provided, no code for contour deformation is created.
- positive_polynomials - iterable of strings or sympy symbols, optional; The names of the polynomials in polynomial_names that should always have a positive real part. For loop integrals, this applies to the first Symanzik polynomial U. If not provided, no polynomial is checked for positiveness. If contour_deformation_polynomial is None, this parameter is ignored.
- decomposition_method - string, optional; The strategy to decompose the polynomials. The following strategies are available:
- 'iterative_no_primary' (default)
- 'geometric_no_primary'
_ 'iterative'
- 'geometric'
- 'geometric_ku'
'iterative', 'geometric', and 'geometric_ku' are only valid for loop integrals. An end user should always use 'iterative_no_primary' or 'geometric_no_primary' here. In order to compute loop integrals, please use the function pysecDec.loop_integral. loop_package().
- normaliz_executable - string, optional; The command to run normaliz. normaliz is only required if decomposition_method starts with 'geometric'. Default: 'normaliz'
- enforce_complex - bool, optional; Whether or not the generated integrand functions should have a complex return type even though they might be purely real. The return type of the integrands is automatically complex if contour_deformation is True or if there are complex_parameters. In other cases, the calculation can typically be kept purely real. Most commonly, this flag is needed if \log (<negative real>) occurs in one of the integrand functions. However, pySecDec will suggest setting this flag to True in that case. Default: False
- split - bool or integer, optional; Whether or not to split the integration domain in order to map singularities from 1 to 0 . Set this option to True if you have singularties when one or more integration variables are one. If an integer is passed, that integer is used as seed to generate the splitting point. Default: False
- ibp_power_goal - number or iterable of number, optional; The power_goal that is forwarded to integrate_by_parts().

This option controls how the subtraction terms are generated. Setting it to -numpy.inf disables integrate_by_parts(), while 0 disables integrate_pole_part().

See also:

To generate the subtraction terms, this function first calls integrate_by_parts() for each integration variable with the give ibp_power_goal. Then integrate_pole_part() is called.
Default: - 1

- use_dreadnaut - bool or string, optional; Whether or not to use squash_symmetry_redundant_sectors_dreadnaut () to find sector symmetries. If given a string, interpret that string as the command line executable dreadnaut. If True, try \$SECDEC_CONTRIB/bin/dreadnaut and, if the environment variable \$SECDEC_CONTRIB is not set, dreadnaut. Default: False
- use_Pak - bool; Whether or not to use squash_symmetry_redundant_sectors_sort () with Pak_sort () to find sector symmetries. Default: True
- processes - integer or None, optional; The maximal number of processes to be used. If None, the number of CPUs multiprocessing. cpu_count () is used. New in version 1.3. Default: None

5.8.2 Template Parser

Functions to generate $\mathrm{c}++$ sources from template files.
pySecDec.code_writer.template_parser.parse_template_file(src, dest, replacements=\{\})
Copy a file from src to dest replacing \% (. . .) instructions in the standard python way.

Warning: If the file specified in dest exists, it is overwritten without prompt.

See also:

```
parse_template_tree()
```


Parameters

- src - str; The path to the template file.
- dest - str; The path to the destination file.
- replacements - dict; The replacements to be performed. The standard python replacement rules apply:

```
>>> '%(var)s = %(value)i' % dict(
... var = 'my_variable',
... value = 5)
'my_variable = 5'
```

pySecDec.code_writer.template_parser.parse_template_tree (src, dest, replacements_in_files $=\{ \}$,
filesys-
tem_replacements $=\{ \}$)
Copy a directory tree from src to dest using parse_template_file() for each file and replacing the filenames according to filesystem_replacements.

See also:

```
parse_template_file()
```


Parameters

- src - str; The path to the template directory.
- dest - str; The path to the destination directory.
- replacements_in_files - dict; The replacements to be performed in the files. The standard python replacement rules apply:

```
>>> '%(var)s = %(value)i' % dict(
... var = 'my_variable',
... value = 5)
'my_variable = 5'
```

- filesystem_replacements - dict; Renaming rules for the destination files. and directories. If a file or directory name in the source tree src matches a key in this dictionary, it is renamed to the corresponding value. If the value is None, the corresponding file is ignored.

5.9 Generated C++ Libraries

A C++ Library to numerically compute a given integral (loop integral) can be generated by the make_package () (loop_package ()) functions. The name passed to the make_package () or loop_package () function will be used as the C++ namespace of the generated library. A program demonstrating the use of the C++ library is generated for each integral and written to name/integrate_name. cpp. Here we document the C++ library API.

See also:

C++ Interface

typedef double real_t
The real type used by the library.
typedef std::complex<real_t> complex_t
The complex type used by the library.
type integrand_return_t
The return type of the integrand function. If the integral has complex parameters or uses contour deformation or if enforce_complex is set to True in the call to make_package() or loop_package () then integrand_return_t is complex_t. Otherwise integrand_return_t is real_t.
template<typename $\mathbf{T}>$
using nested_series_t $=$ secdecutil::Series<secdecutil::Series<...<T>>>
A potentially nested secdecutil: : Series representing the series expansion in each of the regulators. If the integral depends on only one regulator (for example, a loop integral generated with loop_package ()) this type will be a secdecutil: : Series. For integrals that depend on multiple regulators then this will be a series of series representing the multivariate series. This type can be used to write code that can handle integrals depending on arbitrarily many regulators.

See also:

secdecutil: :Series
typedef secdecutil::IntegrandContainer<integrand_return_t, real_t const * const > integrand_t
The type of the integrand. Within the generated C++ library integrands are stored in a container along with the number of integration variables upon which they depend. These containers can be passed to an integrator for numerical integration.

See also:

secdecutil::IntegrandContainer and secdecutil::Integrator.
const unsigned int number_of_sectors
The number of sectors generated by the sector decomposition.
const unsigned int number_of_regulators
The number of regulators on which the integral depends.
const unsigned int number_of_real_parameters
The number of real parameters on which the integral depends.
const std::vectorstd::string names_of_real_parameters
An ordered vector of string representations of the names of the real parameters.
const unsigned int number_of_complex_parameters
The number of complex parameters on which the integral depends.

```
const std::vector<std::string> names_of_complex_parameters
```

An ordered vector of string representations of the names of the complex parameters.
const std::vector<int> lowest_orders
A vector of the lowest order of each regulator which appears in the integral, not including the prefactor.
const std::vector<int> highest_orders
A vector of the highest order of each regulator which appears in the integral, not including the prefactor. This depends on the requested_orders and prefactor/additional_prefactor parameter passed to make_package () or loop_package (). In the case of loop_package () it also depends on the Γ-function prefactor of the integral which appears upon Feynman parametrization.

```
const std::vector<int> lowest_prefactor_orders
```

A vector of the lowest order of each regulator which appears in the prefactor of the integral.
const std::vector<int> highest_prefactor_orders
A vector of the highest order of each regulator which appears in the prefactor of the integral.
const std::vector<int> requested_orders
A vector of the requested orders of each regulator used to generate the C++ library, i.e. the requested_orders parameter passed to make_package () or loop_package ().
const std::vector<nested_series_t<sector_container_t>> sectors
A low level interface for obtaining the underlying integrand $\mathrm{C}++$ functions.

Warning: The precise definition and usage of sectors is likely to change in future versions of pySecDec.
nested_series_t<integrand_return_t> prefactor(const std::vector<real_t> \&real_parameters, const std::vector<complex_ $\rangle>$ \& complex_parameters)
The series expansion of the integral prefactor evaluated with the given parameters. If the library was generated using make_package () it will be equal to the prefactor passed to make_package (). If the library was generated with loop_package () it will be the product of the additional_prefactor passed to loop_package () and the Γ-function prefactor of the integral which appears upon Feynman parametrization.
const std::vector<std::vector<real_ $l \gg$ pole_structures
A vector of the powers of the monomials that can be factored out of each sector of the polynomial during the decomposition.

Example: an integral depending on variables x and y may have two sectors, the first may have a monomial $x^{-1} y^{-2}$ factored out and the second may have a monomial x^{-1} factored out during the decomposition. The resulting pole_structures would read $\{\{-1,-2\},\{-1,0\}\}$. Poles of type x^{-1} are known as logarithmic poles, poles of type x^{-2} are known as linear poles.
std::vector<nested_series_t<integrand_t>> make_integrands (const std::vector<real_t>
\&real_parameters, const
std::vector<complex_i> \&com-
plex_parameters)
(without contour deformation)
std::vector<nested_series_t<integrand_t>> make_integrands (const std::vector<real_t>
\&real_parameters, const
std::vector<complex_i> \&com-
plex_parameters, unsigned num-
ber_of_presamples $=100000$, real_t
deformation_parameters_maximum $=1$. ,
real_t deformation_parameters_minimum
$=1 . \mathrm{e}-5$, real_t deforma-
tion_parameters_decrease_factor =
0.9)
(with contour deformation)

Gives a vector containing the series expansions of individual sectors of the integrand after sector decomposition with the specified real_paraemters and complex_parameters bound. Each element of the vector contains the series expansion of an individual sector. The series consists of instances of secdecutil: : IntegrandContainer which contain the integrand functions and the number of integration variables upon which they depend. The real and complex parameters are bound to the values passed in real_parameters and complex_parameters. If enabled, contour deformation is controlled by the parameters number_of_presamples, deformation_parameters_maximum, deformation_parameters_minimum, deformation_parameters_decrease_factor which are documented in pySecDec.integral_interface. IntegralLibrary.

Passing the integrand_ t to the secdecutil:: Integrator: :integrate () function of an instance of a particular secdecutil:: Integrator will return the numerically evaluated integral. To integrate all orders of all sectors secdecutil: : deep_apply () can be used.

Note: This is the recommended way to access the integrand functions.

See also:

C++ Interface, Integrator Examples, pySecDec.integral_interface.Integrallibrary

5.10 Integral Interface

An interface to libraries generated by pySecDec.code_writer.make_package() or pySecDec. loop_integral. loop_package().
class pySecDec.integral_interface.CPPIntegrator
Abstract base class for integrators to be used with an IntegralLibrary. This class holds a pointer to the $\mathrm{c}++$ integrator and defines the destructor.
class pySecDec.integral_interface.CQuad(integral_library, epsrel=0.01, epsabs=1e-07, $n=100$, verbose $=$ False, zero_border=0.0)
Wrapper for the cquad integrator defined in the gsl library.
Parameters integral_library - IntegralLibrary; The integral to be computed with this integrator.

The other options are defined in Section 4.5 .1 and in the gsl manual.
class pySecDec.integral_interface. Cuhre (integral_library, epsrel=0.01, epsabs=le07, flags $=0, \quad$ mineval $=0$, maxeval $=1000000, \quad$ zero_border $=0.0, \quad$ key $=0$, real_complex_together=False)
Wrapper for the Cuhre integrator defined in the cuba library.
Parameters integral_library - IntegralLibrary; The integral to be computed with this integrator.
The other options are defined in Section 4.5.2 and in the cuba manual.
class pySecDec.integral_interface.Divonne (integral_library, epsrel=0.01, epsabs=le07, flags=0, seed $=0$, mineval $=0$, maxeval=1000000, zero_border=0.0, keyl=2000, key $2=1, \quad$ key $3=1, \quad$ maxpass $=4$, border=0.0, maxchisq=1.0, mindeviation=0.15, real_complex_together=False)
Wrapper for the Divonne integrator defined in the cuba library.

Parameters integral_library - Integrallibrary; The integral to be computed with this integrator.
The other options are defined in Section 4.5.2 and in the cuba manual.

```
class pySecDec.integral_interface.IntegralLibrary(shared_object_path)
    Interface to a c++ library produced by make_package () or loop_package().
```

Parameters shared_object_path - str; The path to the file "<name>_pylink.so" that can be built by the command

```
$ make pylink
```

in the root directory of the c++ library.
Instances of this class can be called with the following arguments:

Parameters

- real_parameters - iterable of float; The real_parameters of the library.
- complex_parameters - iterable of complex; The complex parameters of the library.
- together - bool, optional; Whether to integrate the sum of all sectors or to integrate the sectors separately. Default: True.
- number_of_presamples - unsigned int, optional; The number of samples used for the contour optimization. This option is ignored if the integral library was created without deformation. Default: 100000.
- deformation_parameters_maximum - float, optional; The maximal value the deformation parameters λ_{i} can obtain. If number_of_presamples $=0$, all λ_{i} are set to this value. This option is ignored if the integral library was created without deformation. Default: 1.0.
- deformation_parameters_minimum - float, optional; The minimal value the deformation parameters λ_{i} can obtain. If number_of_presamples $=0$, all λ_{i} are set to this value. This option is ignored if the integral library was created without deformation. Default: 1e-5.
- deformation_parameters_decrease_factor - float, optional; If the sign check with the optimized λ_{i} fails, all λ_{i} are multiplied by this value until the sign check passes. This option is ignored if the integral library was created without deformation. Default: 0.9.

The call operator returns three strings: * The integral without its prefactor * The prefactor * The integral multiplied by the prefactor

The integrator can be configured by calling the member methods use_Vegas(), use_Suave(), use_Divonne(), use_Cuhre() and use_CQuad(). The available options are listed in the documentation of Vegas, Suave, Divonne, Cuhre, and CQuad, respectively. CQuad can only be used for one dimensional integrals. A call to use_CQuad () configures the integrator to use CQuad if possible (1D) and the previously defined integrator otherwise. By default, CQuad (1D only) and Vegas are used with their default arguments. For details about the options, refer to the cuba and the gsl manual.
Further information about the library is stored in the member variable info of type dict.

```
class pySecDec.integral_interface.MultiIntegrator(integral_library,
                                    low_dim_integrator,
                                    high_dim_integrator,critical_dim)
```

New in version 1.3.1.
Wrapper for the secdecutil::MultiIntegrator.

Parameters

- integral_library - IntegralLibrary; The integral to be computed with this integrator.
- low_dim_integrator - CPPIntegrator; The integrator to be used if the integrand is lower dimensional than critical_dim.
- high_dim_integrator - CPPIntegrator; The integrator to be used if the integrand has dimension critical_dim or higher.
- critical_dim - integer; The dimension below which the low_dimensional_integrator is used.

Use this class to switch between integrators based on the dimension of the integrand when integrating the integral_ibrary. For example, "CQuad for 1D and Vegas otherwise" is implemented as:
integral_library.integrator $=$ MultiIntegrator(integral_library, CQuad(integral_ \leftrightarrow library), Vegas (integral_library), 2)

MultiIntegrator can be nested to implement multiple critical dimensions. To use e.g. CQuad for 1D, Cuhre for 2D and 3D, and Vegas otherwise, do:

```
integral_library.integrator = MultiIntegrator(integral_library,CQuad(integral_
\leftrightarrowlibrary),MultiIntegrator(integral_library, Cuhre(integral_library),
\hookrightarrowVegas(integral_library), 4), 2)
```

Warning: The integral_library passed to the integrators must be the same for all of them. Furthermore, an integrator can only be used to integrate the integral_library it has beeen constructed with.
class pySecDec.integral_interface.Suave (integral_library, epsrel=0.01, epsabs=1e-07, flags $=0$, seed $=0$, mineval $=0$, maxeval $=1000000$, zero_border=0.0, nnew $=1000$, nmin=10, flatness $=25.0$, real_complex_together=False)
Wrapper for the Suave integrator defined in the cuba library.
Parameters integral_library - IntegralLibrary; The integral to be computed with this integrator.

The other options are defined in Section 4.5.2 and in the cuba manual.
class pySecDec.integral_interface.Vegas (integral_library, epsrel=0.01, epsabs=1e-07, flags $=0$, seed $=0$, mineval $=0$, maxeval $=1000000$, zero_border=0.0, nstart=1000, nincrease $=500$, nbatch $=1000$, real_complex_together=False)
Wrapper for the Vegas integrator defined in the cuba library.
Parameters integral_library - IntegralLibrary; The integral to be computed with this integrator.
The other options are defined in Section 4.5.2 and in the cuba manual.

5.11 Miscellaneous

Collection of general-purpose helper functions.
pySecDec.misc.adjugate (M)
Calculate the adjugate of a matrix.
Parameters \mathbf{M} - a square-matrix-like array;
pySecDec.misc.all_pairs (iterable)
Return all possible pairs of a given set. all_pairs $([1,2,3,4])-->[(1,2),(3,4)][(1,3)$, $(2,4)][(1,4),(2,3)]$

Parameters iterable - iterable; The set to be split into all possible pairs.
pySecDec.misc.argsort_2D_array (array)
Sort a 2D array according to its row entries. The idea is to bring identical rows together.

See also:

If your array is not two dimesional use argsort_ND_array().

Example:

input	sorted
123	123
234	123
123	234

Return the indices like numpy's argsort () would.
Parameters array - 2D array; The array to be argsorted.
pySecDec.misc.argsort_ND_array (array)
Like argsort_2D_array (), this function groups identical entries in an array with any dimensionality greater than (or equal to) two together.
Return the indices like numpy's argsort () would.

See also:

argsort_2D_array()

Parameters array - ND array, $N>=2$; The array to be argsorted.
pySecDec.misc.assert_degree_at_most_max_degree (expression, variables, max_degree, error_message)
Assert that expression is a polynomial of degree less or equal max_degree in the variables.
pySecDec.misc.cached_property (method)
Like the builtin property to be used as decorator but the method is only called once per instance.
Example:

```
class C(object):
    'Sum up the numbers from one to `N`.'
    def __init__(self, N):
        self.N = N
    @cached_property
    def sum(self):
        result = 0
        for i in range(1, self.N + 1):
            result += i
        return result
```

pySecDec.misc.det (M)
Calculate the determinant of a matrix.
Parameters M-a square-matrix-like array;
pySecDec.misc.doc (docstring)
Decorator that replaces a function's docstring with docstring.
Example:

```
@doc('documentation of `some_funcion`')
def some_function(*args, **kwargs):
    pass
```

pySecDec.misc.flatten (polynomial, depth=inf)
Convert nested polynomials; i.e. polynomials that have polynomials in their coefficients to one single polynomial.

Parameters

- polynomial - pySecDec.algebra.Polynomial; The polynomial to "flatten".
- depth - integer; The maximum number of recursion steps. If not provided, stop if the coefficient is not a pySecDec.algebra.Polynomial.
pySecDec.misc.lowest_order (expression, variable)
Find the lowest order of expression's series expansion in variable.
Example:

```
>>> from pySecDec.misc import lowest_order
>>> lowest_order('exp(eps)', 'eps')
0
>>> lowest_order('gamma(eps)', 'eps')
-1
```


Parameters

- expression - string or sympy expression; The expression to compute the lowest expansion order of.
- variable - string or sympy expression; The variable in which to expand.
pySecDec.misc.missing (full, part)
Return the elements in full that are not contained in part. Raise ValueError if an element is in part but not in full. missing ([1,2,3], [1]) --> [2,3] missing([1, 2,3,1], [1, 2]) --> [3,1] missing([1,2,3], [1,'a']) --> ValueError

Parameters

- full - iterable; The set of elements to complete part with.
- part - iterable; The set to be completed to a superset of full.
pySecDec.misc.parallel_det (M, pool)
Calculate the determinant of a matrix in parallel.

Parameters

- \mathbf{M} - a square-matrix-like array;
- pool-multiprocessing. Pool; The pool to be used.

Example:

```
>>> from pySecDec.misc import parallel_det
>>> from multiprocessing import Pool
>>> from sympy import sympify
>>>M = [['m11','m12','m13','m14'],
... ['m21','m22','m23', 'm24'],
... ['m31','m32','m33', 'm34'],
... ['m41','m42','m43','m44']]
>>> M = sympify(M)
>> parallel__det(M, Pool(2)) # 2 processes
m11* (m22* (m33*m44-m34*m43) - m23*(m32*m44 - m34*m42) +m24*(m32*m43 - m33*m42))
\hookrightarrow-m12*(m21* (m33*m44 - m34*m43) - m23*(m31*m44 - m34*m41) + m24*(m31*m43 - v
m}33\starm41)) +m13*(m21\star (m32*m44-m34*m42) - m22*(m31*m44 - m34*m41) + -
\hookrightarrowm24* (m31*m42-m32*m41)) - m14*(m21*(m32*m43-m33*m42) - m22*(m31*m43 - - 
\hookrightarrowm33*m41) +m23*(m31*m42 - m32*m41))
```

pySecDec.misc.powerset (iterable, min_length $=0$, stride $=1$)
Return an iterator over the powerset of a given set. powerset $([1,2,3])$--> () (1,) (2,) (3,) $(1,2)(1,3)(2,3)(1,2,3)$

Parameters

- iterable - iterable; The set to generate the powerset for.
- min_length - integer, optional; Only generate sets with minimal given length. Default: 0.
- stride - integer; Only generate sets that have a multiple of stride elements. powerset ([1,2,3], stride=2) --> () (1,2) $(1,3)(2,3)$
pySecDec.misc.rangecomb (low, high)
Return an iterator over the occuring orders in a multivariate series expansion between low and high.

Parameters

- low - vector-like array; The lowest orders.
- high - vector-like array; The highest orders.

Example:
>>> from pySecDec.misc import rangecomb
\ggg all_orders $=\operatorname{rangecomb}([-1,-2],[0,0])$
>>> list (all_orders)
$[(-1,-2),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0)]$
pySecDec.misc.sympify_symbols (iterable, error_message, allow_number=False)
sympify each item in iterable and assert that it is a symbol.

chapter 6

References

Chapter 7

Indices and tables

- genindex
- modindex
- search

Bibliography

[BH00] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741, doi:10.1016/S0550-3213(00)00429-6, arXiv:hep-ph/0004013
[BHJ+15] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm.196,
doi:10.1016/j.cpc.2015.05.022, arXiv:1502.06595
[BIR] W. Bruns and B. Ichim and T. Römer and R. Sieg and C. Söger, Normaliz. Algorithms for rational cones and affine monoids,
available at https://www.normaliz.uni-osnabrueck.de
[BIS16] W. Bruns, B. Ichim, C. Söger, The power of pyramid decomposition in Normaliz, 2016, J.Symb.Comp.74, 513-536,
doi:10.1016/j.jsc.2015.09.003, arXiv:1206.1916
[Bor14] S. Borowka, Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications, 2014, PhD Thesis - Technische Universität München
mediaTUM:1220360,
arXiv:1410.7939
[GKR+11] J. Gluza, K. Kajda, T. Riemann, V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics, 2011, Eur.Phys.J.C71, doi:10.1140/epjc/s10052-010-1516-y, arXiv:1010.1667
[GSL] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual - Third Edition, 2009, Network Theory Ltd., ISBN: 0-9546120-7-8 (ISBN-13: 978-0-9546120-7-8), available at http://www.gnu.org/software/gsl/
[Hah05] T. Hahn, CUBA: A Library for multidimensional numerical integration, 2005, Comput.Phys.Comm.168, 78-95,
doi:10.1016/j.cpc.2005.01.010,
arXiv:hep-ph/0404043
[Hah16] T. Hahn, Concurrent Cuba, 2016, Comput.Phys.Comm.207, 341-349, doi:10.1016/j.cpc.2016.05.012, arXiv:1408.6373
[Hei08] G. Heinrich, Sector Decomposition, 2008, Int.J.Mod.Phys.A23, doi:10.1142/S0217751X08040263, arXiv:0803.4177
[KU10] T. Kaneko and T. Ueda, A Geometric method of sector decomposition, 2010, Comput.Phys.Comm.181, doi:10.1016/j.cpc.2010.04.001, arXiv:0908.2897
[KUV13] J. Kuipers, T. Ueda, J. A. M. Vermaseren, Code Optimization in FORM, 2015, Comput.Phys.Comm.189, 1-19, doi:10.1016/j.cpc.2014.08.008, arXiv:1310.7007
[MP+14] B. D. McKay and A. Piperno, Practical graph isomorphism, II, 2014, Journal of Symbolic Computation, 60, 94-112, doi:10.1016/j.jsc.2013.09.003 arXiv:1301.1493
[Pak11] A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, 2012, J. Phys.: Conf. Ser. 368012049 , doi:10.1088/1742-6596/368/1/012049, arXiv:1111.0868
[PSD17] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, pySecDec: A toolbox for the numerical evaluation of multi-scale integrals, 2018, Comput.Phys.Comm.222,
doi:10.1016/j.cpc.2017.09.015, arXiv:1703.09692
[RUV17] B. Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2, arXiv:1707.06453
[Ver00] J. A. M. Vermaseren, New features of FORM, arXiv:math-ph/0010025

Python Module Index

a

pySecDec.algebra, 35

C

pySecDec.code_writer, 60
pySecDec.code_writer.template_parser, 64

d

pySecDec.decomposition, 50
pySecDec.decomposition.geometric, 54
pySecDec.decomposition.iterative, 52
pySecDec.decomposition.splitting, 56
e
pySecDec.expansion, 59
I
pySecDec.integral_interface, 67

|

pySecDec.loop_integral,42
m
pySecDec.matrix_sort, 57
pySecDec.misc, 69
p
pySecDec.polytope, 49
S
pySecDec.subtraction, 58

A

adjugate() (in module pySecDec.misc), 69
all_pairs() (in module pySecDec.misc), 70
argsort_2D_array() (in module pySecDec.misc), 70
argsort_ND_array() (in module pySecDec.misc), 70
assert_degree_at_most_max_degree() (in module pySecDec.misc), 70

B

becomes_zero_for() (pySecDec.algebra.Polynomial method), 39

C

cached_property() (in module pySecDec.misc), 70
Cheng_Wu() (in module SecDec.decomposition.geometric), 54
complete_representation() (pySecDec.polytope.Polytope method), 49
compute_derivatives() (pySecDec.algebra.Function method), 36
convex_hull() (in module pySecDec.polytope), 50
copy () (pySecDec.algebra.ExponentiatedPolynomial method), 35
copy () (pySecDec.algebra.Function method), 36
copy() (pySecDec.algebra.Log method), 37
copy() (pySecDec.algebra.Polynomial method), 39
copy() (pySecDec.algebra.Pow method), 40
copy() (pySecDec.algebra.Product method), 40
copy() (pySecDec.algebra.ProductRule method), 41
copy() (pySecDec.algebra.Sum method), 42
CPPIntegrator (class in pySecDec.integral_interface), 67
CQuad (class in pySecDec.integral_interface), 67
Cuhre (class in pySecDec.integral_interface), 67

D

derive() (pySecDec.algebra.ExponentiatedPolynomial method), 36
derive() (pySecDec.algebra.Function method), 37
derive() (pySecDec.algebra.Log method), 37
derive() (pySecDec.algebra.LogOfPolynomial method), 38
derive() (pySecDec.algebra.Polynomial method), 39
derive() (pySecDec.algebra.Pow method), 40
derive() (pySecDec.algebra.Product method), 40
derive() (pySecDec.algebra.ProductRule method), 41
derive() (pySecDec.algebra.Sum method), 42
$\operatorname{det}()$ (in module pySecDec.misc), 70
Divonne (class in pySecDec.integral_interface), 67
$\operatorname{doc}()$ (in module pySecDec.misc), 71
E
EndOfDecomposition, 52
expand_singular() (in module pySecDec.expansion), 60
expand_sympy() (in module pySecDec.expansion), 60
expand_Taylor() (in module pySecDec.expansion), 60
ExponentiatedPolynomial (class in pySecDec.algebra), 35
Expression() (in module pySecDec.algebra), 36

F

find_singular_set() (in module pySecDec.decomposition.iterative), 52
find_singular_sets_at_one() (in module pySecDec.decomposition.splitting), 56
flatten() (in module pySecDec.misc), 71
from_expression() (pySecDec.algebra.LogOfPolynomial static method), 38
from_expression() (pySecDec.algebra.Polynomial static method), 39
Function (class in pySecDec.algebra), 36

G

generate_fan() (in module pySecDec.decomposition.geometric), 54
geometric_decomposition() (in module pySecDec.decomposition.geometric), 54
geometric_decomposition_ku() (in module pySecDec.decomposition.geometric), 55

H

has_constant_term() (pySecDec.algebra.Polynomial method), 39

I
IntegralLibrary (class in pySecDec.integral_interface), 68 integrate_by_parts() (in module pySecDec.subtraction), 58
integrate_pole_part() (in module pySecDec.subtraction), 58
iteration_step() (in module py-
SecDec.decomposition.iterative), 53
iterative_decomposition() (in module py-
SecDec.decomposition.iterative), 53
iterative_sort() (in module pySecDec.matrix_sort), 57

L

light_Pak_sort() (in module pySecDec.matrix_sort), 57
Log (class in pySecDec.algebra), 37
LogOfPolynomial (class in pySecDec.algebra), 37
loop_package() (in module pySecDec.loop_integral), 46
LoopIntegral (class in pySecDec.loop_integral), 42
LoopIntegralFromGraph (class in py-
SecDec.loop_integral), 43
LoopIntegralFromPropagators (class in py-
SecDec.loop_integral), 44
lowest_order() (in module pySecDec.misc), 71

M

make_package() (in module pySecDec.code_writer), 61 missing() (in module pySecDec.misc), 71
MultiIntegrator (class in pySecDec.integral_interface), 68

N

name::complex_t (C++ type), 65
name::highest_orders (C++ member), 66
name::highest_prefactor_orders (C++ member), 66
name::integrand_return_t (C++ type), 65
name::integrand_t (C++ type), 65
name::lowest_orders ($\mathrm{C}++$ member), 65
name::lowest_prefactor_orders (C++ member), 66
name::make_integrands (C++ function), 66
name::names_of_complex_parameters (C++ member), 65
name::names_of_real_parameters (C++ member), 65
name::nested_series_t (C++ type), 65
name::number_of_complex_parameters (C++ member), 65
name::number_of_real_parameters (C++ member), 65
name::number_of_regulators (C++ member), 65
name::number_of_sectors (C++ member), 65
name::pole_structures ($\mathrm{C}++$ member), 66
name::prefactor (C++ function), 66
name::real_t (C++ type), 65
name::requested_orders (C++ member), 66
name::sectors (C++ member), 66

0

OrderError, 59

P

Pak_sort() (in module pySecDec.matrix_sort), 57
parallel_det() (in module pySecDec.misc), 71
parse_template_file() (in module py-
SecDec.code_writer.template_parser), 64
parse_template_tree() (in module py-
SecDec.code_writer.template_parser), 64
plot_diagram() (in module py-
SecDec.loop_integral.draw), 48
pole_structure() (in module pySecDec.subtraction), 59
Polynomial (class in pySecDec.algebra), 38
Polytope (class in pySecDec.polytope), 49
Pow (class in pySecDec.algebra), 39
powerset() (in module pySecDec.misc), 72
primary_decomposition() (in module py-
SecDec.decomposition.iterative), 53
primary_decomposition_polynomial() (in module py-
SecDec.decomposition.iterative), 53
Product (class in pySecDec.algebra), 40
ProductRule (class in pySecDec.algebra), 41
pySecDec.algebra (module), 35
pySecDec.code_writer (module), 60
pySecDec.code_writer.template_parser (module), 64
pySecDec.decomposition (module), 50
pySecDec.decomposition.geometric (module), 54
pySecDec.decomposition.iterative (module), 52
pySecDec.decomposition.splitting (module), 56
pySecDec.expansion (module), 59
pySecDec.integral_interface (module), 67
pySecDec.loop_integral (module), 42
pySecDec.matrix_sort (module), 57
pySecDec.misc (module), 69
pySecDec.polytope (module), 49
pySecDec.subtraction (module), 58

R

rangecomb() (in module pySecDec.misc), 72
remap_one_to_zero() (in module py-
SecDec.decomposition.splitting), 56
remap_parameters() (in module py-
SecDec.decomposition.iterative), 54
replace() (pySecDec.algebra.Function method), 37
replace() (pySecDec.algebra.Log method), 37
replace() (pySecDec.algebra.Polynomial method), 39
replace() (pySecDec.algebra.Pow method), 40
replace() (pySecDec.algebra.Product method), 40
replace() (pySecDec.algebra.ProductRule method), 41
replace() (pySecDec.algebra.Sum method), 42

S

secdecutil::deep_apply (C++ function), 26
secdecutil::IntegrandContainer (C++ class), 29
secdecutil::IntegrandContainer::integrand (C++ member), 29
secdecutil::IntegrandContainer::number_of_integration_variables
(C++ member), 29
secdecutil::Integrator (C++ class), 30
secdecutil::Integrator::integrate (C++ function), 30
secdecutil::Integrator::together (C++ member), 30
secdecutil::MultiIntegrator (C++ class), 30
secdecutil::MultiIntegrator::critical_dim (C++ member), 30
secdecutil::MultiIntegrator::high_dimensional_integrator (C++ member), 30
secdecutil::MultiIntegrator::low_dimensional_integrator (C++ member), 30
secdecutil::Series (C++ class), 25
secdecutil::Series::expansion_parameter (C++ member), 25
secdecutil::Series::get_order_max (C++ function), 25
secdecutil::Series::get_order_min (C++ function), 25
secdecutil::Series::get_truncated_above (C++ function), 25
secdecutil::Series::has_term (C++ function), 25
secdecutil::Series::Series (C++ function), 25
secdecutil::UncorrelatedDeviation (C++ class), 28
secdecutil::UncorrelatedDeviation::uncertainty (C++ member), 28
secdecutil::UncorrelatedDeviation::value (C++ member), 28
Sector (class in pySecDec.decomposition), 50
simplify() (pySecDec.algebra.ExponentiatedPolynomial method), 36
simplify() (pySecDec.algebra.Function method), 37
simplify() (pySecDec.algebra.Log method), 37
simplify() (pySecDec.algebra.LogOfPolynomial method), 38
simplify() (pySecDec.algebra.Polynomial method), 39
simplify() (pySecDec.algebra.Pow method), 40
simplify() (pySecDec.algebra.Product method), 41
simplify() (pySecDec.algebra.ProductRule method), 41
simplify() (pySecDec.algebra.Sum method), 42
split() (in module pySecDec.decomposition.splitting), 56
split_singular() (in module pySecDec.decomposition.splitting), 57
squash_symmetry_redundant_sectors_dreadnaut() (in module pySecDec.decomposition), 52
squash_symmetry_redundant_sectors_sort() (in module pySecDec.decomposition), 51
Suave (class in pySecDec.integral_interface), 69
Sum (class in pySecDec.algebra), 41
sympify_symbols() (in module pySecDec.misc), 72

T

to_sum() (pySecDec.algebra.ProductRule method), 41
transform_variables() (in module py-
SecDec.decomposition.geometric), 55
triangulate() (in module pySecDec.polytope), 50
V
Vegas (class in pySecDec.integral_interface), 69
vertex_incidence_lists() (pySecDec.polytope.Polytope method), 50

