7. References

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741,
S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm.196,
W. Bruns and B. Ichim and T. Römer and R. Sieg and C. Söger, Normaliz. Algorithms for rational cones and affine monoids,
W. Bruns, B. Ichim, C. Söger, The power of pyramid decomposition in Normaliz, 2016, J.Symb.Comp.74, 513–536,
S. Borowka, Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications, 2014, PhD Thesis - Technische Universität München
J. Gluza, K. Kajda, T. Riemann, V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics, 2011, Eur.Phys.J.C71,
M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual - Third Edition, 2009, Network Theory Ltd.,
ISBN: 0-9546120-7-8 (ISBN-13: 978-0-9546120-7-8),
T. Hahn, CUBA: A Library for multidimensional numerical integration, 2005, Comput.Phys.Comm.168, 78-95,
T. Hahn, Concurrent Cuba, 2016, Comput.Phys.Comm.207, 341-349,
G. Heinrich, Sector Decomposition, 2008, Int.J.Mod.Phys.A23,
T. Kaneko and T. Ueda, A Geometric method of sector decomposition, 2010, Comput.Phys.Comm.181,
J. Kuipers, T. Ueda, J. A. M. Vermaseren, Code Optimization in FORM, 2015, Comput.Phys.Comm.189, 1-19,
Z. Li, J. Wang, Q.-S. Yan, X. Zhao, Efficient Numerical Evaluation of Feynman Integrals, 2016, Chin.Phys.C40 No. 3, 033103,
B. D. McKay and A. Piperno, Practical graph isomorphism, II, 2014, Journal of Symbolic Computation, 60, 94-112,
A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, 2012, J. Phys.: Conf. Ser. 368 012049,
A. Pak, A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, 2011, Eur.Phys.J.C 71, 1626,
S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, pySecDec: A toolbox for the numerical evaluation of multi-scale integrals, Comput.Phys.Comm. 222 (2018),
S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput.Phys.Commun. 240 (2019),
G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V Magerya, A Poldaru, J. Schlenk, E. Villa, Expansion by regions with pySecDec, Comput.Phys.Commun. 273 (2022),
G. Heinrich, S. P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical Scattering Amplitudes with pySecDec,
B. Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2,
J. A. M. Vermaseren, New features of FORM,
G. Mishima, High-Energy Expansion of Two-Loop Massive Four-Point Diagrams