7. References

[BH00]
T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741,
[BHJ+15]
S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, 2015, Comput.Phys.Comm.196,
[BIR]
W. Bruns and B. Ichim and T. Römer and R. Sieg and C. Söger, Normaliz. Algorithms for rational cones and affine monoids,
[BIS16]
W. Bruns, B. Ichim, C. Söger, The power of pyramid decomposition in Normaliz, 2016, J.Symb.Comp.74, 513–536,
[Bor14]
S. Borowka, Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications, 2014, PhD Thesis - Technische Universität München
[GKR+11]
J. Gluza, K. Kajda, T. Riemann, V. Yundin, Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics, 2011, Eur.Phys.J.C71,
[GSL]
M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual - Third Edition, 2009, Network Theory Ltd.,
ISBN: 0-9546120-7-8 (ISBN-13: 978-0-9546120-7-8),
[Hah05]
T. Hahn, CUBA: A Library for multidimensional numerical integration, 2005, Comput.Phys.Comm.168, 78-95,
[Hah16]
T. Hahn, Concurrent Cuba, 2016, Comput.Phys.Comm.207, 341-349,
[Hei08]
G. Heinrich, Sector Decomposition, 2008, Int.J.Mod.Phys.A23,
[KU10]
T. Kaneko and T. Ueda, A Geometric method of sector decomposition, 2010, Comput.Phys.Comm.181,
[KUV13]
J. Kuipers, T. Ueda, J. A. M. Vermaseren, Code Optimization in FORM, 2015, Comput.Phys.Comm.189, 1-19,
[LWY+15]
Z. Li, J. Wang, Q.-S. Yan, X. Zhao, Efficient Numerical Evaluation of Feynman Integrals, 2016, Chin.Phys.C40 No. 3, 033103,
[MP+14]
B. D. McKay and A. Piperno, Practical graph isomorphism, II, 2014, Journal of Symbolic Computation, 60, 94-112,
[Pak11]
A. Pak, The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, 2012, J. Phys.: Conf. Ser. 368 012049,
[PS11]
A. Pak, A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, 2011, Eur.Phys.J.C 71, 1626,
[PSD17]
S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, pySecDec: A toolbox for the numerical evaluation of multi-scale integrals, Comput.Phys.Comm. 222 (2018),
[PSD18]
S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput.Phys.Commun. 240 (2019),
[PSD21]
G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V Magerya, A Poldaru, J. Schlenk, E. Villa, Expansion by regions with pySecDec, Comput.Phys.Commun. 273 (2022),
[PSD23]
G. Heinrich, S. P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical Scattering Amplitudes with pySecDec,
[RUV17]
B. Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2,
[Ver00]
J. A. M. Vermaseren, New features of FORM,
[Mis18]
G. Mishima, High-Energy Expansion of Two-Loop Massive Four-Point Diagrams